

PI044D - Winding 311 Technical Pata Sheet

SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on

other standards and certifications can be considered on request.

VOLTAGE REGULATOR

AS480 AVR fitted as STANDARD

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling. The AS480 will support limited accessories, RFI suppession remote voltage trimmer and for the P1 range only a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

The AVR is can be fitted to either side of the generator in its own housing in the non-drive end bracket.

Excitation Boost System (EBS) (OPTIONAL)

The EBS is a single, self-contained unit, attached to the non-drive end of the generator.

The EBS unit consists of the Excitation Boost Controller (EBC) and an Excitation Boost Generator (EBG). Under fault conditions, or when the generator is subjected to a large impact load such as a motor starting, the generator voltage will drop. The EBC senses the drop in voltage and engages the output power of the EBG. This additional power feeds the generator's excitation system, supporting the load until breaker discrimination can remove the fault or enable the generator to pick up a motor and drive the voltage recovery.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted at the non-drive end of the generator. Dedicated single phase generators are also available. A sheet steel terminal box contains provides ample space for the customers' wiring and gland arrangements. Alternative terminal boxes are available for customers who want to fit additional components in the terminal box.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION / IMPREGNATION

/The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 9 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

5% For reverse rotation

(Standard rotation CW when viewed from DE)

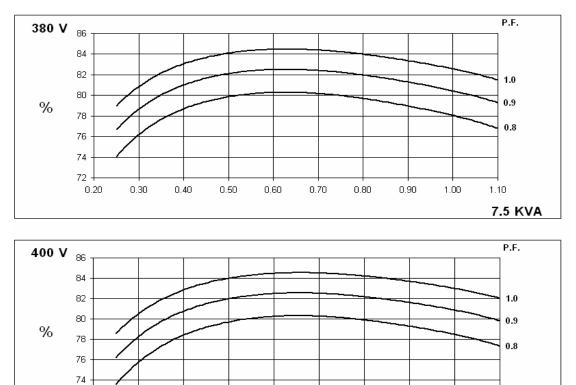
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

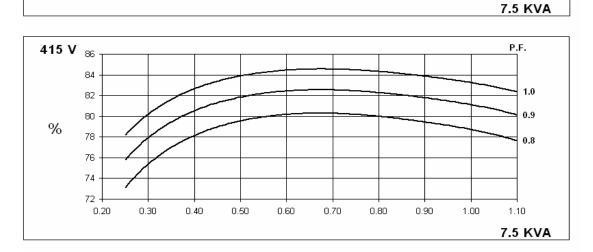
Front cover drawing typical of product range.

WINDING 311

CONTROL SYSTEM	STANDARD	AS480 AVI	R (SELF EX	CITED)						
VOLTAGE REGULATION	± 1.0 %									
SUSTAINED SHORT CIRCUIT	SELF EXCI	TED MACHI	NES DO NO	T SUSTAIN	A SHORT C		RRENT			
CONTROL SYSTEM	AS480 AVR	WITH OPT	ONAL EXCI	TATION BO	OST SYSTE	M (EBS)				
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIR	CUIT DECR	EMENT CU	RVE (page 8	3)				
INSULATION SYSTEM				CLA	SS H					
PROTECTION	IP23									
RATED POWER FACTOR				0	.8					
STATOR WINDING		DOUBLE LAYER CONCENTRIC								
WINDING PITCH				TWO T	HIRDS					
WINDING LEADS				1	2					
STATOR WDG. RESISTANCE		2.1 Oh	ms PER PH	ASE AT 22°0	C SERIES S	TAR CONN	ECTED			
ROTOR WDG. RESISTANCE				0.437 Ohn	ns at 22°C					
EXCITER STATOR RESISTANCE				17.5 Ohm						
EXCITER STATOR RESISTANCE						22°C				
				12.9 Ohm	-					
		61000 6 0 P				097EN	r to footor: f	or others		
R.F.I. SUPPRESSION			BSEN 6100	-						
	NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0%									
	2250 Rev/Min									
BEARING DRIVE END	BALL. 6309 - 2RS. (ISO)									
BEARING NON-DRIVE END				BALL. 6306	- 2RS. (ISO)					
	14/1711									
		EBS		JT EBS		EBS		JT EBS		
WEIGHT COMP. GENERATOR		kg	73.3	-		kg	76.3			
WEIGHT WOUND STATOR	24	kg	24	kg	24	kg	24	kg		
WEIGHT WOUND ROTOR	26.32	•	24.61	kg	27.32	-	25.62	-		
WR ² INERTIA	0.0893	kgm ²	0.0876	kgm ²	0.0895	kgm ²	0.0878	kgm ²		
SHIPPING WEIGHTS in a crate	92	kg	90.3	kg	101	kg	99.3	kg		
PACKING CRATE SIZE		71 x 51 :	k <mark>67 (c</mark> m)			71 x 51 x	x 67 (cm)			
		50	Hz			60	Hz			
TELEPHONE INTERFERENCE		THF	<2%			TIF	<50			
COOLING AIR		0.110 m³/s	ec 233cfm			0.135 m³/s	ec 286 cfm			
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277		
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138		
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138		
	7.5	7.5	7.5	7.1	8.3	8.8	9.1	9.4		
VALUES Xd DIR. AXIS SYNCHRONOUS	1.62	1.46	1.36	1.14	1.94	1.84	1.74	1.65		
X'd DIR. AXIS TRANSIENT	0.17	0.15	0.14	0.12	0.19	0.18	0.17	0.16		
X"d DIR. AXIS SUBTRANSIENT	0.11	0.10	0.09	0.08	0.13	0.12	0.12	0.11		
Xq QUAD. AXIS REACTANCE	0.78	0.70	0.65	0.55	0.93	0.88	0.83	0.79		
X"q QUAD. AXIS SUBTRANSIENT	0.17	0.15	0.14	0.12	0.20	0.19	0.18	0.17		
XL LEAKAGE REACTANCE X2 NEGATIVE SEQUENCE	0.07	0.06	0.06	0.05	0.07	0.07	0.06	0.06		
X0ZERO SEQUENCE	0.14	0.13	0.12	0.10	0.17	0.16	0.15	0.14		
REACTANCES ARE SATURAT			LUES ARE							
T'd TRANSIENT TIME CONST.				0.0	06 s					
T"d SUB-TRANSTIME CONST.				0.0	02 s					
T'do O.C. FIELD TIME CONST.				0.1	5 s					
Ta ARMATURE TIME CONST.					07 s					
SHORT CIRCUIT RATIO				1/	Xd					

0.30


0.40

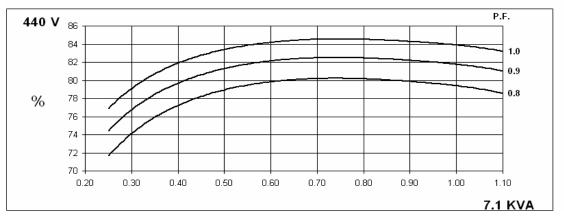

0.50

PI044D

Winding 311

THREE PHASE EFFICIENCY CURVES

0.60

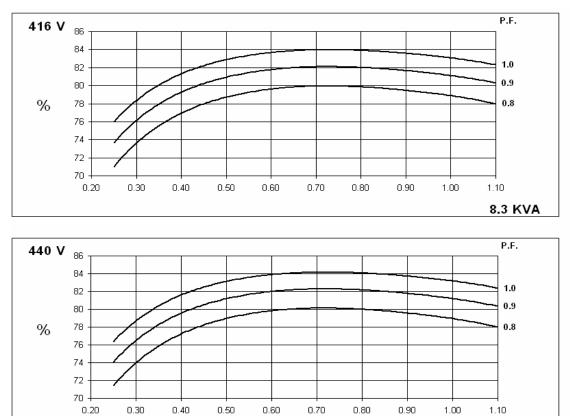

0.70

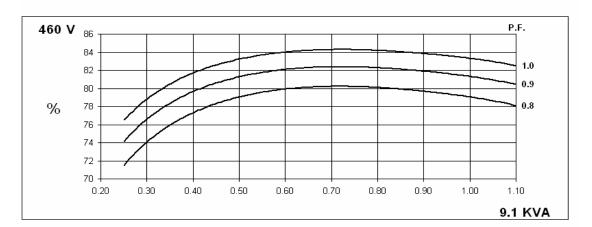
0.80

0.90

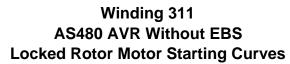
1.00

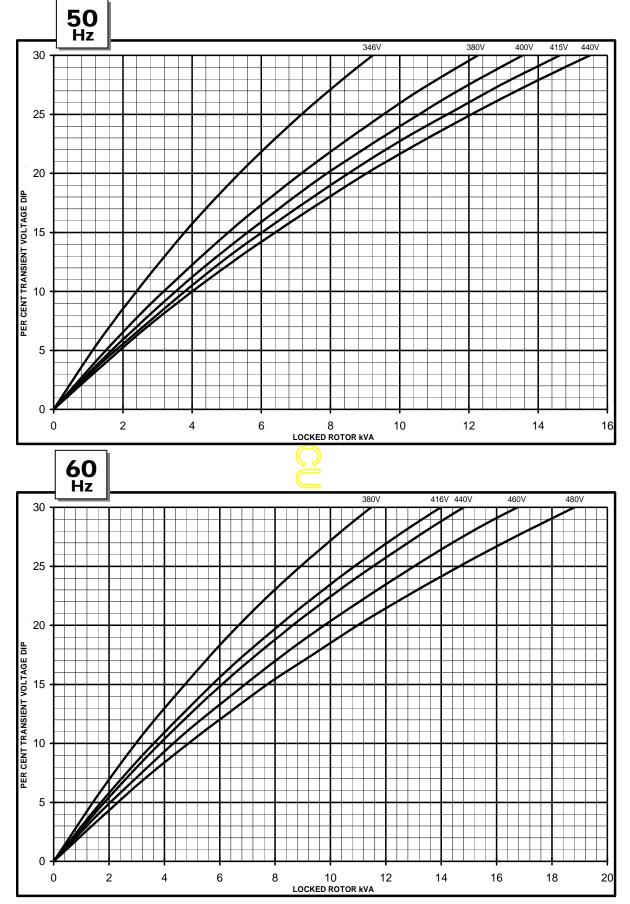
1.10

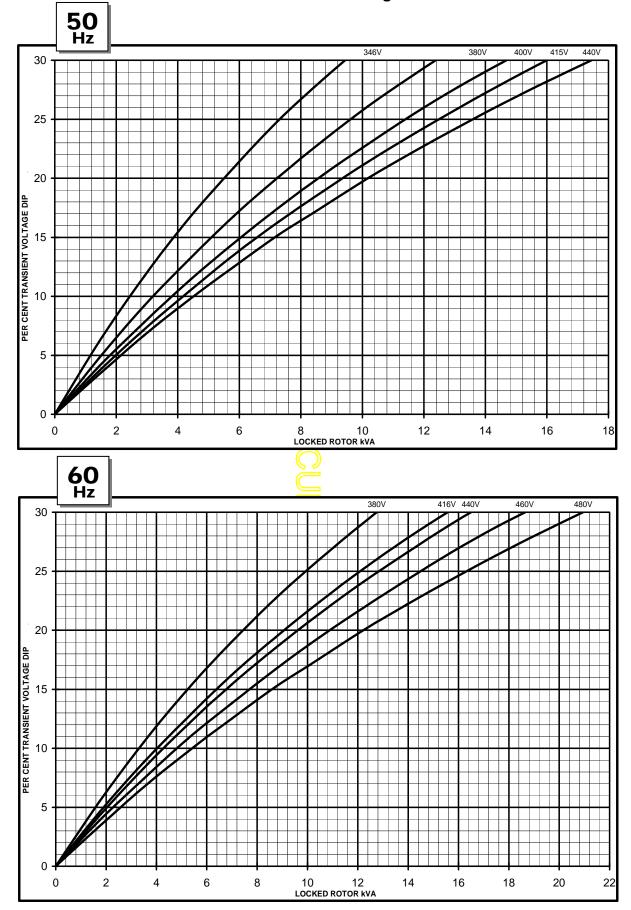


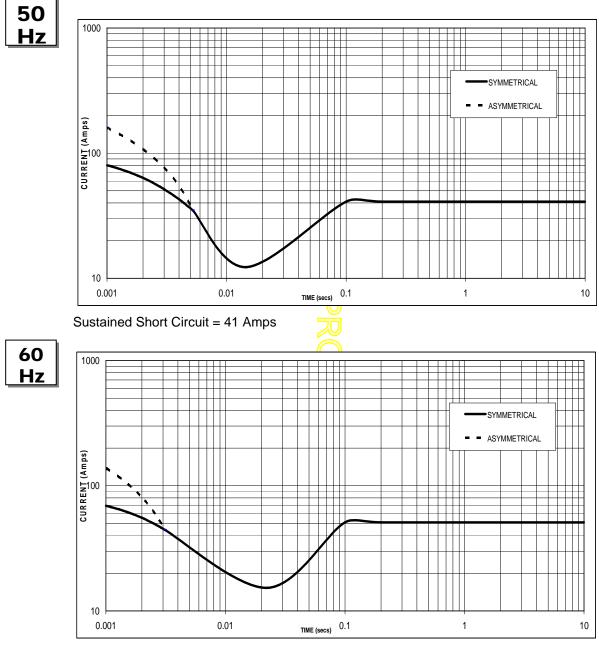

8.8 KVA

PI044D


Winding 311







Winding 311 AS480 AVR With EBS fitted Locked Rotor Motor Starting Curves

WITH EBS FITTED Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 51 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	X 1.00	416v	X 1.00			
400v	X 1.05	440v	X 1.06			
415v	X 1.09	460v	X 1.10			
440v	X 1.16	480v	X 1.15			
The sustaine	d current val	ue is constar	t irrespective			

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

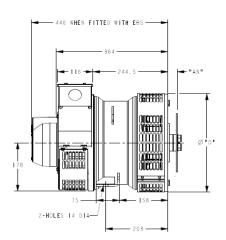
All other times are unchanged

Note 3 Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

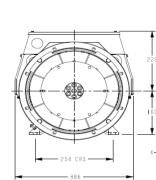
Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732

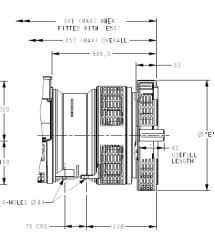
STAMFORD

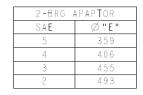

PI044D

Winding 311 / 0.8 Power Factor


RATINGS

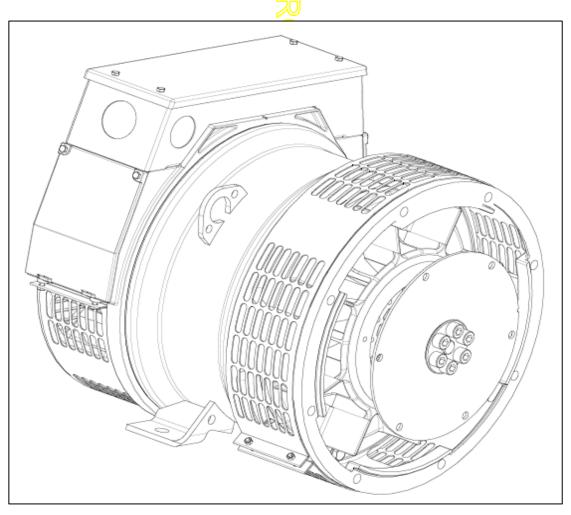
	RATINGS																
	Class - Temp Rise	C	ont. F -	105/40'	õ	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	Sta	andby -	163/27	°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
Hz	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	6.8	6.8	6.8	6.5	7.5	7.5	7.5	7.1	8.1	8.1	8.1	7.7	8.3	8.3	8.3	7.8
	kW	5.4	5.4	5.4	5.2	6.0	6.0	6.0	5.7	6.5	6.5	6.5	6.2	6.6	6.6	6.6	6.2
	Efficiency (%)	79.0	79.3	79.5	79.9	78.0	78.5	78.7	79.4	77.1	77.7	78.0	78.8	76.8	77.4	77.7	78.7
	kW Input	6.9	6.9	6.8	6.5	7.7	7.6	7.6	7.2	8.4	8.3	8.3	7.8	8.6	8.6	8.5	7.9
							6										
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	7.5	8.0	8.2	8.5	8.3	8.8	9.1	9.4	8.9	9.5	9.8	10.1	9.1	9.7	10.0	10.3
	kW	6.0	6.4	6.6	6.8	6.6	7.0	7.3	7.5	7.1	7.6	7.8	8.1	7.3	7.8	8.0	8.2
	Efficiency (%)	79.5	79.6	79.7	79.8	78.9	79 <mark>.0</mark>	79.1	79.1	78.3	78.3	78.4	78.5	78.1	78.1	78.2	78.3
	kW Input	7.5	8.0	8.2	8.5	8.4	8.9	9.2	9.5	9.1	9.7	10.0	10.3	9.3	9.9	10.2	10.5
								J									


DIMENSIONS


COUPLIN	NG DISC	I-BRG /	APAPTOR
SAE	" A N "	SAE	Ø"D'
6.5	30.2	5	361
7.5	30.2	4	405
8	62	3	451
10	53.8	2	489
11.5	39.6		

8-HOLES SPACED AS 12 8-HOLES SPACED AS 12

Ø 42,018 ¥


Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

PI044E - Winding 311 Technical Pata Sheet

SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on

request.

VOLTAGE REGULATOR

AS480 AVR fitted as STANDARD

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling. The AS480 will support limited accessories, RFI suppession remote voltage trimmer and for the P1 range only a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

The AVR is can be fitted to either side of the generator in its own housing in the non-drive end bracket.

Excitation Boost System (EBS) (OPTIONAL)

The EBS is a single, self-contained unit, attached to the non-drive end of the generator.

The EBS unit consists of the Excitation Boost Controller (EBC) and an Excitation Boost Generator (EBG). Under fault conditions, or when the generator is subjected to a large impact load such as a motor starting, the generator voltage will drop. The EBC senses the drop in voltage and engages the output power of the EBG. This additional power feeds the generator's excitation system, supporting the load until breaker discrimination can remove the fault or enable the generator to pick up a motor and drive the voltage recovery.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted at the non-drive end of the generator. Dedicated single phase generators are also available. A sheet steel terminal box contains provides ample space for the customers' wiring and gland arrangements. Alternative terminal boxes are available for customers who want to fit additional components in the terminal box.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION / IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 9 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

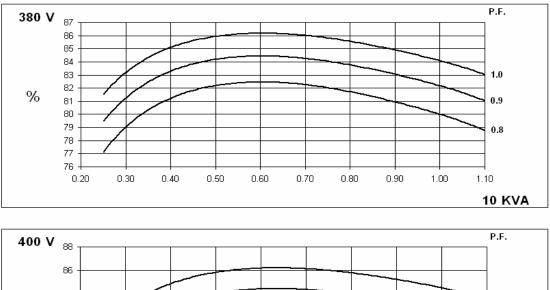
5% For reverse rotation

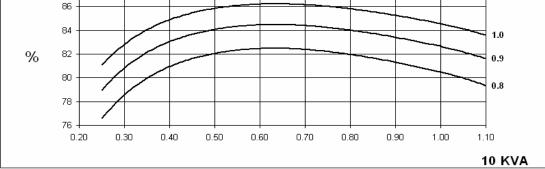
(Standard rotation CW when viewed from DE)

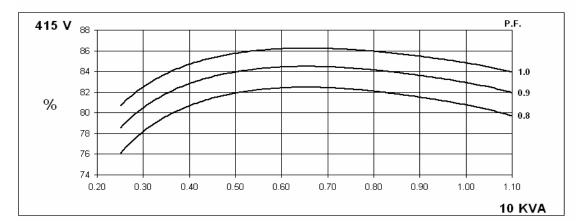
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

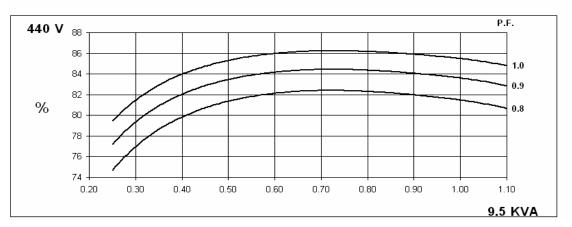
Front cover drawing typical of product range.

WINDING 311

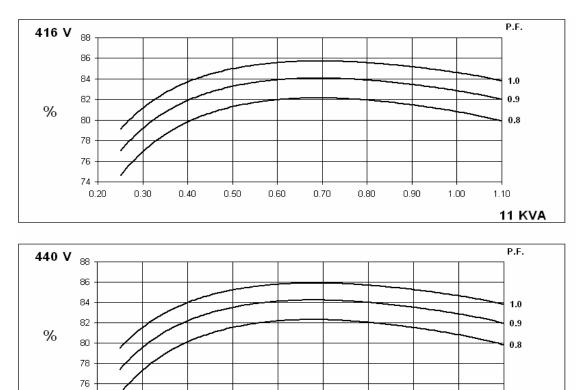

CONTROL SYSTEM	STANDARD	STANDARD AS480 AVR (SELF EXCITED)									
VOLTAGE REGULATION	± 1.0 %										
SUSTAINED SHORT CIRCUIT	SELF EXCI	TED MACHI	NES DO NO	T SUSTAIN	A SHORT C	IRCUIT CUI	RRENT				
CONTROL SYSTEM	AS480 AVR		IONAL EXCI	TATION BO	OST SYSTE	M (EBS)					
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIF	RCUIT DECR	EMENT CU	RVE (page 8	3)					
INSULATION SYSTEM		CLASS H									
PROTECTION		IP23									
RATED POWER FACTOR				0	.8						
STATOR WINDING		DOUBLE LAYER CONCENTRIC									
WINDING PITCH				TWO T	HIRDS						
WINDING LEADS				1	2						
STATOR WDG. RESISTANCE		1.327 O	hms PER PH	ASE AT 22	°C SERIES	STAR CON	NECTED				
ROTOR WDG. RESISTANCE				0.415 Ohr							
EXCITER STATOR RESISTANCE				17.5 Ohm							
						2000					
EXCITER ROTOR RESISTANCE			0.21		PHASE AT	22°C					
EBS STATOR RESISTANCE			20	12.9 Ohm							
R.F.I. SUPPRESSION			BSEN 6100								
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-	DISTORTIN	G BALANCE	D LINEAR L	OAD < 5.0%	0			
MAXIMUM OVERSPEED	2250 Rev/Min										
BEARING DRIVE END	BALL. 6309 - 2RS. (ISO)										
BEARING NON-DRIVE END	BALL. 6306 - 2RS. (ISO)										
		1 BE/	ARING			2 BE/	ARING				
	WITH	EBS		JT EBS	WITH	EBS	WITHOU	JT EBS			
WEIGHT COMP. GENERATOR	80	kg	78.3	kg	83	kg	81.3	kg			
WEIGHT WOUND STATOR	27	kg	27	kg	27	kg	27	kg			
WEIGHT WOUND ROTOR	27.87	kg	26.17	kg	28.87	kg	27.17	kg			
WR ² INERTIA	0.0953	kgm ²	<u>_</u> 0.0952	kgm ²	0.097	kgm ²	0.0953	kgm ²			
SHIPPING WEIGHTS in a crate	100	kg	98.3	kg	109	kg	107.3	kg			
PACKING CRATE SIZE		71 x 51	x 67 (cm)			71 x 51 :	x 67 (cm)				
		50	Hz ₇₇			60	Hz				
TELEPHONE INTERFERENCE		THF	<2%			TIF	<50				
COOLING AIR			sec 233cfm				ec 286 cfm				
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277			
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138			
VOLTAGE VARAELEE STAR	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138			
kVA BASE RATING FOR REACTANCE	10	10	10	9.5	11	11.8	12.1	12.5			
VALUES											
	1.86	1.68	1.56	1.32	2.20	2.11	1.98	1.88			
X'd DIR. AXIS TRANSIENT X''d DIR. AXIS SUBTRANSIENT	0.19	0.17	0.16	0.13	0.22 0.15	0.21	0.20	0.19			
Xq QUAD. AXIS REACTANCE	0.12	0.80	0.74	0.63	1.06	1.02	0.15	0.10			
X"q QUAD. AXIS SUBTRANSIENT	0.19	0.17	0.16	0.13	0.23	0.22	0.21	0.20			
XL LEAKAGE REACTANCE	0.07	0.06	0.06	0.05	0.08	0.08	0.07	0.07			
X2 NEGATIVE SEQUENCE	0.16	0.14	0.13	0.11	0.19	0.18	0.17	0.16			
X0ZERO SEQUENCE	0.08	0.07	0.07	0.05	0.09	0.09	0.08	0.08			
REACTANCES ARE SATURAT	ED	VA	LUES ARE			ND VOLTA	GE INDICAT	ED			
T'd TRANSIENT TIME CONST. T"d SUB-TRANSTIME CONST.					07 s 02 s						
T'do O.C. FIELD TIME CONST.					7 s						
Ta ARMATURE TIME CONST.					7 S 07 S						
SHORT CIRCUIT RATIO					Xd						

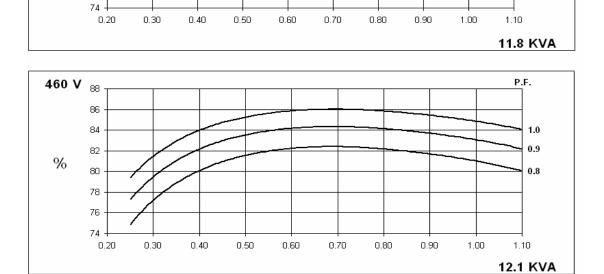


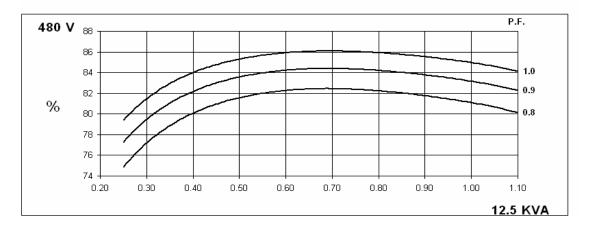



PI044E

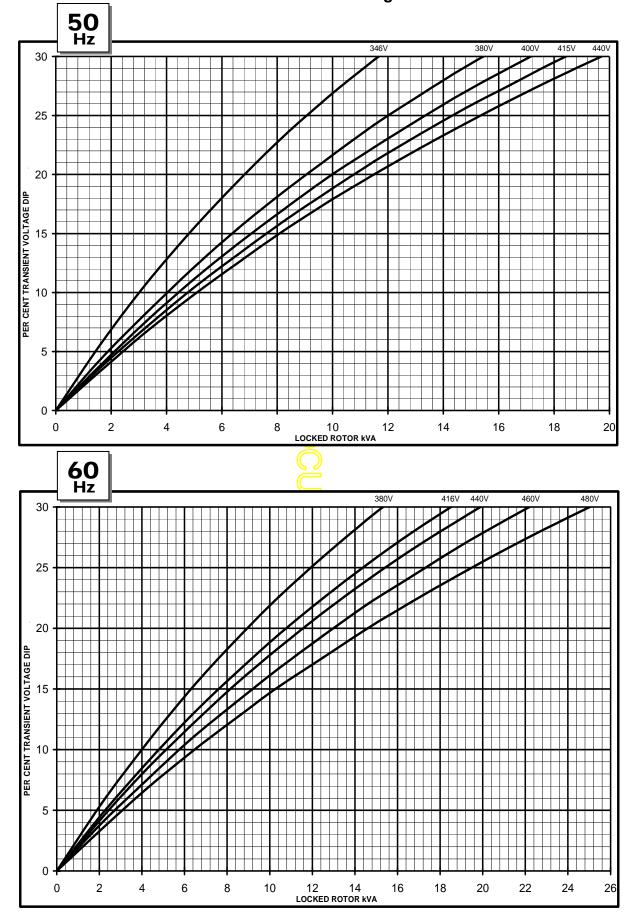
Winding 311

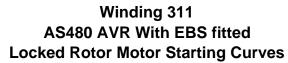


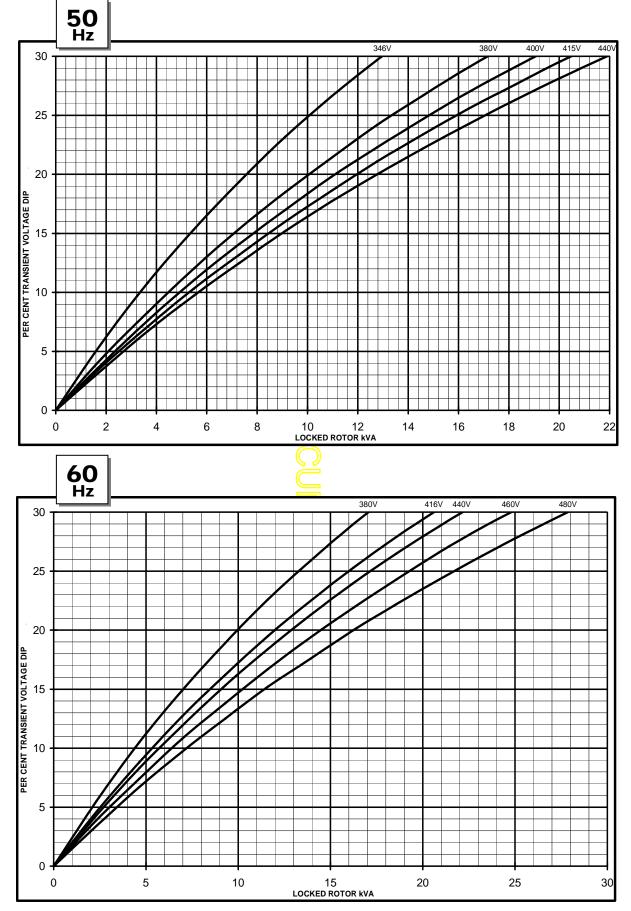

60 Hz


PI044E

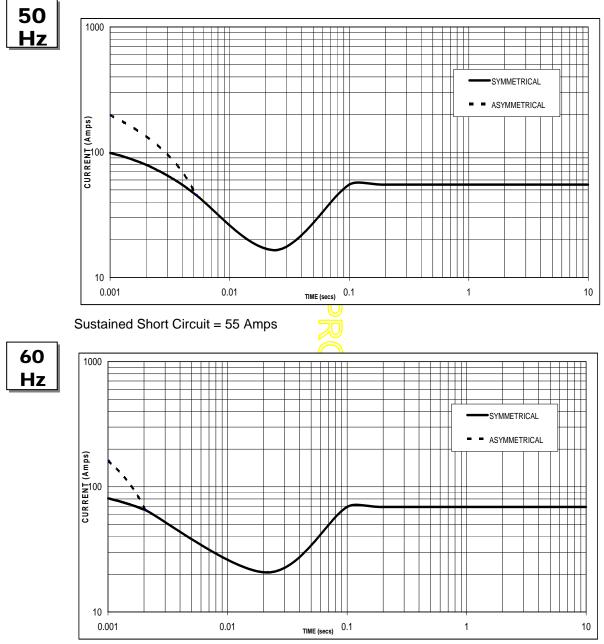
Winding 311







Winding 311 AS480 AVR Without EBS Locked Rotor Motor Starting Curves



WITH EBS FITTED Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 69 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	X 1.00	416v	X 1.00			
400v	X 1.05	440v	X 1.06			
415v	X 1.09	460v	X 1.10			
440v	X 1.16	480v	X 1.15			
The sustaine	d current val	ua is constan	t irrespective			

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

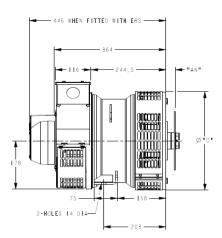
All other times are unchanged

Note 3 Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

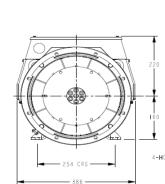
Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732

STAMFORD


PI044E

Winding 311 / 0.8 Power Factor


RATI	NGS
------	-----

	Class - Temp Rise	Co	ont. F -	105/40'	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	″°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	9.1	9.1	9.1	8.6	10.0	10.0	10.0	9.5	10.8	10.8	10.8	10.3	11.0	11.0	11.0	10.5
	kW	7.3	7.3	7.3	6.9	8.0	8.0	8.0	7.6	8.6	8.6	8.6	8.2	8.8	8.8	8.8	8.4
	Efficiency (%)	80.9	81.3	81.5	82.0	80.0	80.5	80.8	81.5	79.1	79.7	80.0	80.9	78.8	79.4	79.8	80.7
	kW Input	9.0	9.0	8.9	8.4	10.0	9.9	9.9	9.3	10.9	10.8	10.8	10.2	11.2	11.1	11.0	10.4
							7			-				-			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	10.0	10.7	11.0	11.4	11.0	11.8	12.1	12.5	11.9	12.7	13.1	13.5	12.1	12.9	13.3	13.8
	kW	8.0	8.6	8.8	9.1	8.8	9.4	9.7	10.0	9.5	10.2	10.5	10.8	9.7	10.3	10.6	11.0
	Efficiency (%)	81.4	81.5	81.7	81.7	80.8	80 <mark>.8</mark>	81.0	81.1	80.1	80.1	80.3	80.4	80.0	80.0	80.1	80.1
	kW Input	9.8	10.5	10.8	11.2	10.9	11.7	11.9	12.3	11.9	12.7	13.1	13.4	12.1	12.9	13.3	13.8

DIMENSIONS

COUPLIN	NG DISC] [I-BRG	APAPTOR
SAE	"AN"] [SAE	Ø"D'
6.5	30.2] [5	361
7.5	30.2		4	405
8	62		3	451
10	53.8	[2	489
11.5	39.6	ן ו		

541 (MAX) WHEN FITTED WITH 'EBS' 457 (MAX) OVERALL	
0LES Ø 14	65 65 82 USEFULL LENGTH

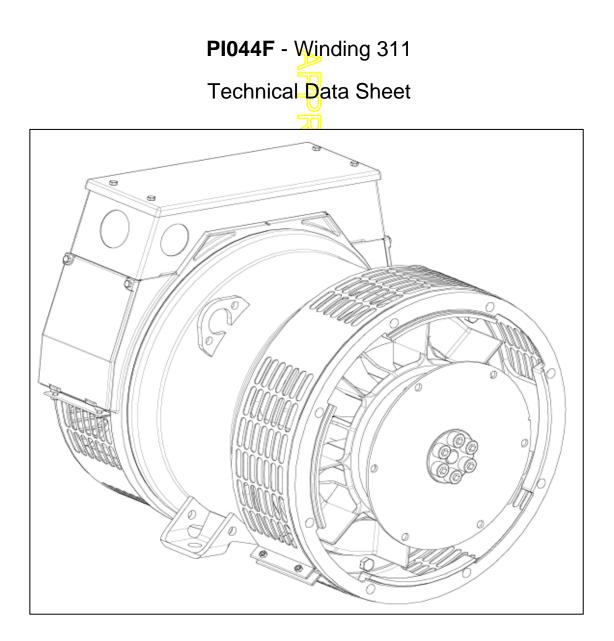
-Ø42,018

øе

8-HOLES	SPACED	AS	12	
8-HOLES	SPACED	AS	12	

Ø"D" 361

2-BRG /	APAPTOR
SAE	Ø"E"
5	359
4	406
3	455
2	493



Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on

request.

VOLTAGE REGULATOR

AS480 AVR fitted as STANDARD

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling. The AS480 will support limited accessories, RFI suppession remote voltage trimmer and for the P1 range only a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

The AVR is can be fitted to either side of the generator in its own housing in the non-drive end bracket.

Excitation Boost System (EBS) (OPTIONAL)

The EBS is a single, self-contained unit, attached to the non-drive end of the generator.

The EBS unit consists of the Excitation Boost Controller (EBC) and an Excitation Boost Generator (EBG). Under fault conditions, or when the generator is subjected to a large impact load such as a motor starting, the generator voltage will drop. The EBC senses the drop in voltage and engages the output power of the EBG. This additional power feeds the generator's excitation system, supporting the load until breaker discrimination can remove the fault or enable the generator to pick up a motor and drive the voltage recovery.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted at the non-drive end of the generator. Dedicated single phase generators are also available. A sheet steel terminal box contains provides ample space for the customers' wiring and gland arrangements. Alternative terminal boxes are available for customers who want to fit additional components in the terminal box.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION / IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 9 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

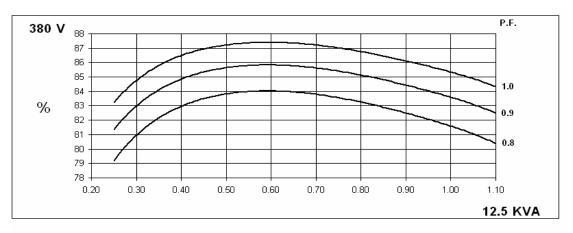
5% For reverse rotation

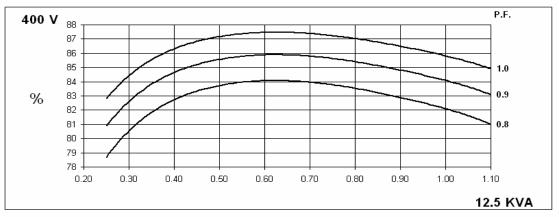
(Standard rotation CW when viewed from DE)

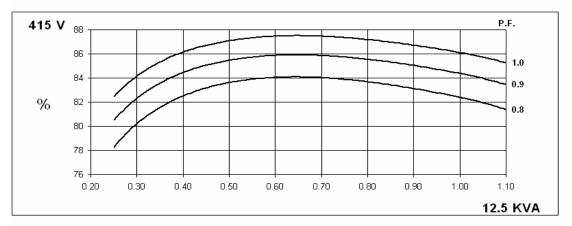
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

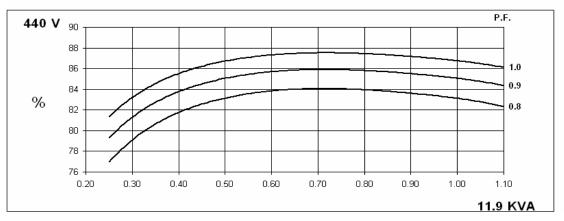
Front cover drawing typical of product range.

WINDING 311

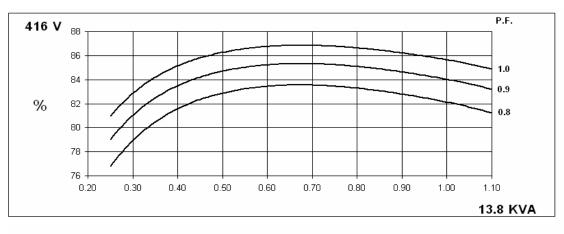

CONTROL SYSTEM	STANDARD	AS480 AVI	R (SELF EX	CITED)								
VOLTAGE REGULATION	± 1.0 %	± 1.0 %										
SUSTAINED SHORT CIRCUIT	SELF EXCI	TED MACHI	NES DO NO	T SUSTAIN	A SHORT C	IRCUIT CUF	RRENT					
CONTROL SYSTEM	AS480 AVR	WITH OPT	IONAL EXCI	TATION BO	OST SYSTE	M (EBS)						
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIR		EMENT CU	RVE (page 8	3)						
STATOR WINDING			DOI	JBLE LAYEI	R CONCENT	[RIC						
WINDING PITCH		TWO THIRDS										
WINDING LEADS				1	2							
STATOR WDG. RESISTANCE		0.951 O	hms PER PH		°C SERIES	STAR CON	NECTED					
ROTOR WDG. RESISTANCE			-	0.465 Ohr	ns at 22°C		-					
EXCITER STATOR RESISTANCE					ns at 22°C							
			0.000			2220						
EXCITER ROTOR RESISTANCE			0.228		R PHASE AT	22°C						
EBS STATOR RESISTANCE					ns at 22°C							
R.F.I. SUPPRESSION					0875G, VDE							
WAVEFORM DISTORTION	NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0%											
MAXIMUM OVERSPEED				2250 F	Rev/Min							
BEARING DRIVE END	BALL. 6309 - 2RS. (ISO)											
BEARING NON-DRIVE END			\bigcirc	BALL. 6306	- 2RS. (ISO))						
		1 BE/	ARING				ARING					
	WITH EBS				WITH	EBS	WITHOU	JT EBS				
WEIGHT COMP. GENERATOR	89	kg	87.3	kg	92	kg						
WEIGHT WOUND STATOR	33	kg	33	kg	33	kg	33	kg				
WEIGHT WOUND ROTOR	31.62	ka	29.92	-	32.62	ka	30.92	ka				
WR ² INERTIA	0.1113	0	0.1096	•	0.1114	•	0.1097 kgm ²					
SHIPPING WEIGHTS in a crate	106	•	104.3 kg		115	-	113.3 kg					
PACKING CRATE SIZE	100	0	x 67 (cm)	Ng	71 x 51 x 67 (cm)							
			Hz				, ,	· · ·				
							Hz					
TELEPHONE INTERFERENCE			<2%		TIF<50							
COOLING AIR		0.110 m³/s	s <mark>ec 23</mark> 3cfm		0.135 m³/sec 286 cfm							
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277				
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138				
VOLTAGE SERIES DELTA	220/110	230/115	24 <mark>0</mark> /120	254/127	240/120	254/127	266/133	277/138				
kVA BASE RATING FOR REACTANCE	12.5	12.5	12.5	11.9	13.8	14.7	15.2	15.6				
Xd DIR. AXIS SYNCHRONOUS	2.03	1.83	1.70	1.44	2.42	2.30	2.18	2.05				
X'd DIR. AXIS TRANSIENT	0.20	0.18	0.17	0.14	0.24	0.23	0.22	0.20				
X"d DIR. AXIS SUBTRANSIENT	0.13	0.12	0.11	0.09	0.16	0.15	0.14	0.14				
Xq QUAD. AXIS REACTANCE	0.98	0.88	0.82	0.69	1.16	1.10	1.04	0.98				
X"q QUAD. AXIS SUBTRANSIENT	0.21	0.19	0.18	0.15	0.25	0.24	0.23	0.21				
	0.08	0.07	0.07	0.06	0.09	0.09	0.08	0.08				
X2 NEGATIVE SEQUENCE	0.18	0.16	0.15	0.13	0.21	0.20	0.19	0.18				
X0ZERO SEQUENCE REACTANCES ARE SATURAT	0.09 ED	0.08		0.06 PER LINIT A	0.10 T RATING A		0.09 GE INDICAT	0.08 ED				
T'd TRANSIENT TIME CONST.		VF	LULU ARE			UND VOLIA						
T''d SUB-TRANSTIME CONST.	0.009 s 0.002 s											
T'do O.C. FIELD TIME CONST.					2 s							
Ta ARMATURE TIME CONST.					2 3 07 s							
	1			0.0	-							

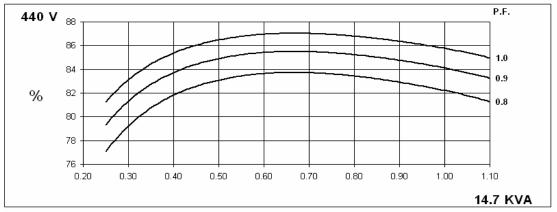


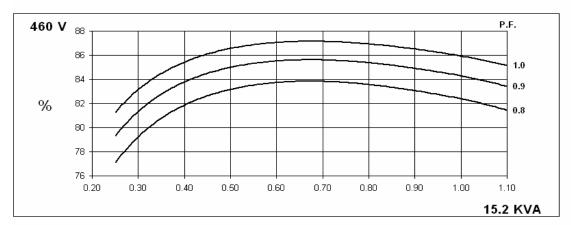

PI044F

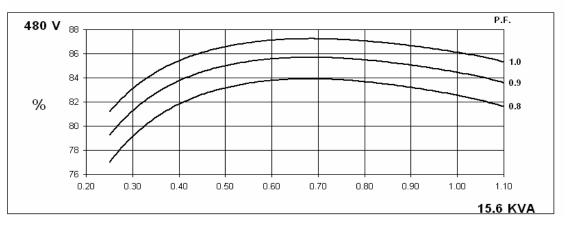


Winding 311

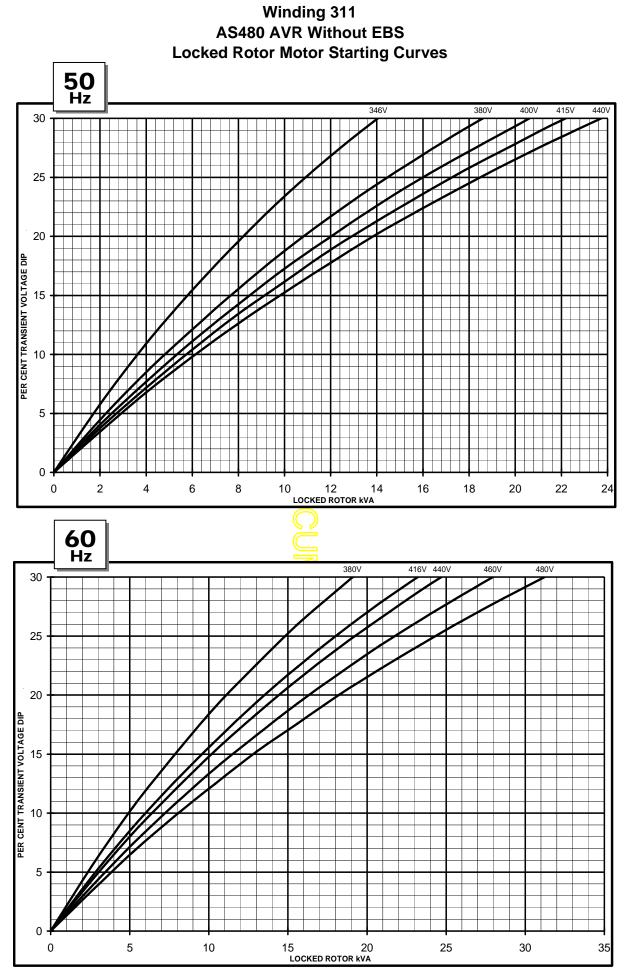


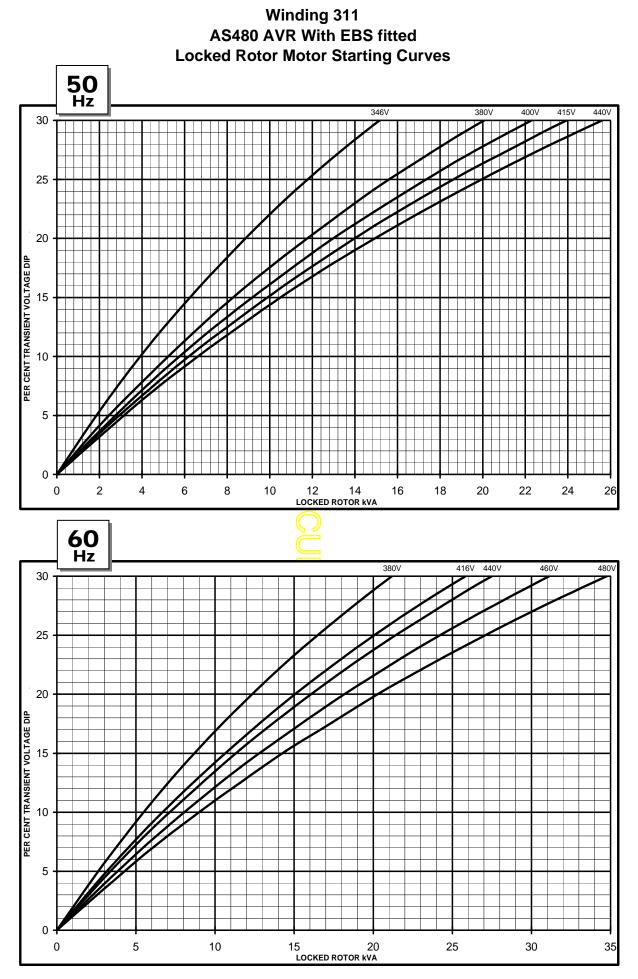


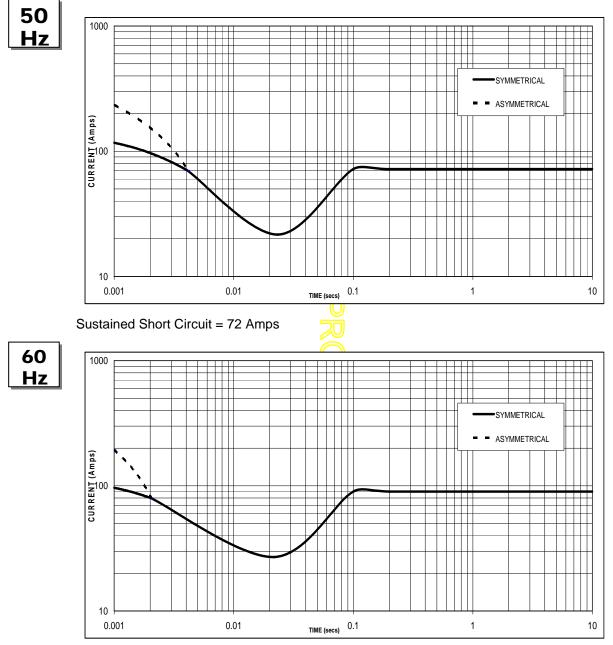



PI044F

Winding 311







WITH EBS FITTED Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 90 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60	Hz
Voltage	Factor	Voltage	Factor
380v	X 1.00	416v	X 1.00
400v	X 1.05	440v	X 1.06
415v	X 1.09	460v	X 1.10
440v	X 1.16	480v	X 1.15
The sustains	d current val	ua is constan	t irreenective

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

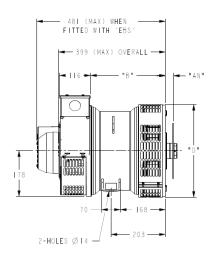
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

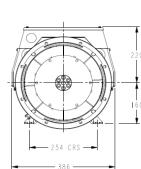
Note 3 Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2

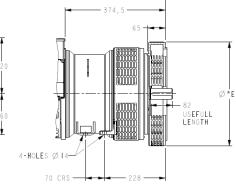
Series Delta = Curve current value X 1.732


STAMFORD

PI044F


Winding 311 / 0.8 Power Factor

	RATINGS																
	Class - Temp Rise	Co	ont. F -	105/40'	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	Sta	andby -	163/27	″°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
Hz	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	11.4	11.4	11.4	10.8	12.5	12.5	12.5	11.9	13.5	13.5	13.5	12.8	13.8	13.8	13.8	13.1
	kW	9.1	9.1	9.1	8.6	10.0	10.0	10.0	9.5	10.8	10.8	10.8	10.2	11.0	11.0	11.0	10.5
	Efficiency (%)	82.5	82.8	82.9	83.3	81.7	82.1	82.3	82.9	80.9	81.3	81.6	82.4	80.6	81.1	81.4	82.2
	kW Input	11.0	11.0	11.0	10.3	12.2	12.2	12.2	11.5	13.3	13.3	13.2	12.4	13.6	13.6	13.5	12.8
						-	1			-							
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	12.5	13.4	13.8	14.3	13.8	14.7	15.2	15.6	14.9	15.9	16.4	16.9	15.1	16.2	16.7	17.2
	kW	10.0	10.7	11.0	11.4	11.0	11.8	12.2	12.5	11.9	12.7	13.1	13.5	12.1	13.0	13.4	13.8
	Efficiency (%)	83.3	83.3	83.4	83.4	82.7	82 <mark>.</mark> 7	82.8	82.8	82.1	82.0	82.1	82.2	82.0	81.9	82.0	82.0
	kW Input	12.0	12.8	13.2	13.7	13.3	14.3	<mark>/</mark> 14.7	15.1	14.5	15.5	16.0	16.4	14.8	15.9	16.3	16.8
								J									

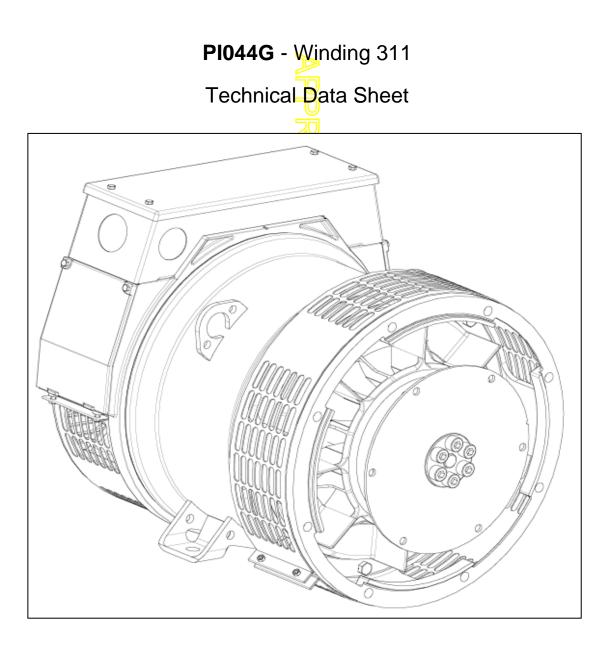

DIMENSIONS

COUPLI	NG DISC		I-BRG A	DAPTORS
SAE	" A N "		SAE	"D"
6.5	30.2		5	361
7.5	30.2		4	405
8	62		3	451
10	53.8		2	489
11.5	39.6	1		

8-HOLES SPACED AS 12 8-HOLES SPACED AS 12

Ø 42,018

2-BRG A	DAPTORS
SAE	Ø"E"
5	359
4	406
3	455
2	493



Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

PI044G

SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on

other standards and certifications can be considered on request.

VOLTAGE REGULATOR

AS480 AVR fitted as STANDARD

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling. The AS480 will support limited accessories, RFI suppession remote voltage trimmer and for the P1 range only a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

The AVR is can be fitted to either side of the generator in its own housing in the non-drive end bracket.

Excitation Boost System (EBS) (OPTIONAL)

The EBS is a single, self-contained unit, attached to the non-drive end of the generator.

The EBS unit consists of the Excitation Boost Controller (EBC) and an Excitation Boost Generator (EBG). Under fault conditions, or when the generator is subjected to a large impact load such as a motor starting, the generator voltage will drop. The EBC senses the drop in voltage and engages the output power of the EBG. This additional power feeds the generator's excitation system, supporting the load until breaker discrimination can remove the fault or enable the generator to pick up a motor and drive the voltage recovery.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted at the non-drive end of the generator. Dedicated single phase generators are also available. A sheet steel terminal box contains provides ample space for the customers' wiring and gland arrangements. Alternative terminal boxes are available for customers who want to fit additional components in the terminal box.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION / IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 9 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

5% For reverse rotation

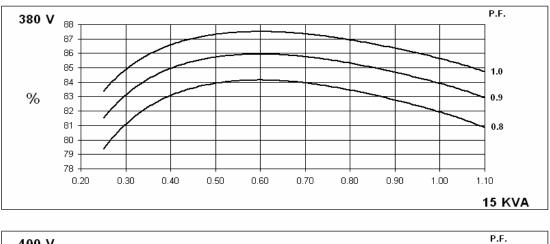
(Standard rotation CW when viewed from DE)

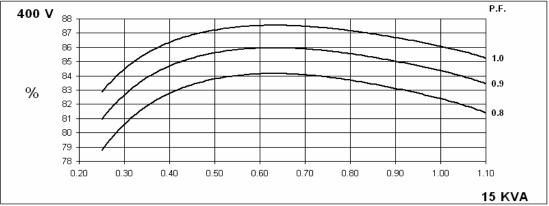
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

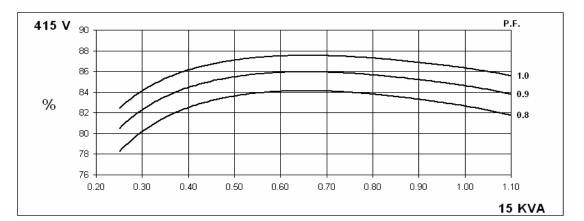
Front cover drawing typical of product range.

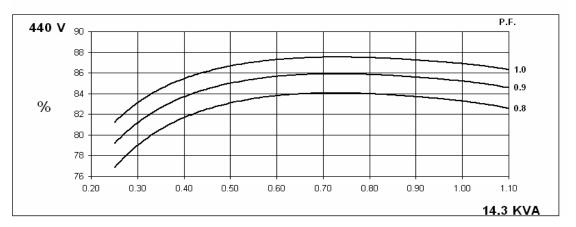
PI044G

WINDING 311

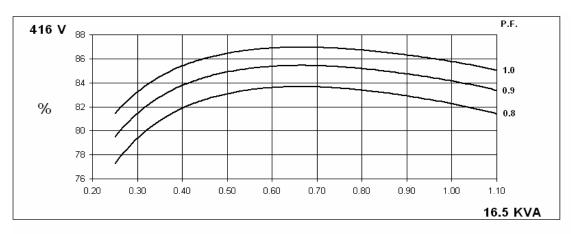

CONTROL SYSTEM	STANDARD	AS480 AVI	R (SELF EXC	CITED)								
VOLTAGE REGULATION	± 1.0 %											
SUSTAINED SHORT CIRCUIT		TED MACHI	NES DO NO	T SUSTAIN	A SHORT C		RRENT					
CONTROL SYSTEM			IONAL EXCI			. ,						
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIR	CUIT DECR	EMENT CU	RVE (page 8	3)						
STATOR WINDING			DO	JBLE LAYEI	R CONCENT	RIC						
WINDING PITCH		TWO THIRDS										
WINDING LEADS				1	2							
STATOR WDG. RESISTANCE		0.702 O	hms PER PH	ASE AT 22	°C SERIES	STAR CON	NECTED					
ROTOR WDG. RESISTANCE				0.551 Ohn	ns at 22°C							
EXCITER STATOR RESISTANCE				18.5 Ohm	s at 22°C							
EXCITER ROTOR RESISTANCE			0.228	3 Ohms PER	PHASE AT	22°C						
EBS STATOR RESISTANCE				12.9 Ohm		-						
R.F.I. SUPPRESSION	BO EN A	61000 6 2 º	BS EN 6100			0875N rofo	r to factory f	or othere				
	NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0%											
			20		Rev/Min							
BEARING DRIVE END					- 2RS. (ISO)							
BEARING NON-DRIVE END				BALL. 6306	- 2RS. (ISO)							
			ARING				ARING					
		EBS		JT EBS		EBS		JT EBS				
WEIGHT COMP. GENERATOR	96	kg	94.3	-	99	kg						
WEIGHT WOUND STATOR	36	kg	36	kg	36	kg	36	kg				
WEIGHT WOUND ROTOR	34.94	kg	33.24 kg		35.94	kg	34.24 kg					
WR ² INERTIA	0.1266	kgm ²	0.1249 kgm ²		0.1267	kgm ²	0.125 kgm ²					
SHIPPING WEIGHTS in a crate	112	kg	110.3	kg	121 kg 119.3 kg							
PACKING CRATE SIZE		71 x 51 :	x 67 (cm)			71 x 51 :	x 67 (cm)					
		50	Hz_			60	Hz					
TELEPHONE INTERFERENCE			<2%		TIF<50							
COOLING AIR		0.110 m³/s	sec 233cfm		0.135 m³/sec 286 cfm							
VOLTAGE SERIES STAR	380/220		415/240	440/254	416/240	440/254	460/266	480/277				
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138				
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138				
kVA BASE RATING FOR REACTANCE	15	15	15	14.3	16.5	17.6	18.2	18.8				
VALUES Xd DIR. AXIS SYNCHRONOUS	1.82	1.64	1.52	1.29	2.15	2.05	1.94	1.84				
X'd DIR. AXIS STREAKONOUS X'd DIR. AXIS TRANSIENT	0.19	0.17	0.16	0.13	0.22	0.21	0.20	0.19				
X"d DIR. AXIS SUBTRANSIENT	0.13	0.17	0.10	0.09	0.15	0.21	0.20	0.13				
Xq QUAD. AXIS REACTANCE	0.86	0.78	0.72	0.61	1.03	0.98	0.93	0.88				
X"q QUAD. AXIS SUBTRANSIENT	0.19	0.17	0.16	0.13	0.22	0.21	0.20	0.19				
XL LEAKAGE REACTANCE	0.07	0.06	0.06	0.05	0.08	0.08	0.07	0.07				
X2 NEGATIVE SEQUENCE	0.16	0.14	0.13	0.11	0.19	0.18	0.17	0.16				
X0ZERO SEQUENCE	0.08	0.07		0.06				0.08				
REACTANCES ARE SATURAT T'd TRANSIENT TIME CONST.		VA	LUES ARE			NIND VOLTA		ED				
T"d SUB-TRANSTIME CONST.	0.011 s 0.003 s											
T'do O.C. FIELD TIME CONST.					26 s							
Ta ARMATURE TIME CONST.					07 s							
	1				Xd							

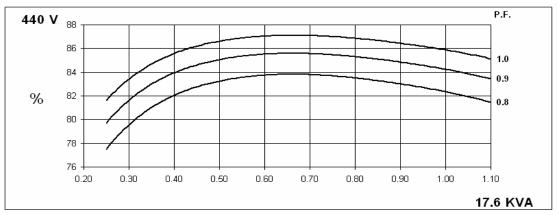


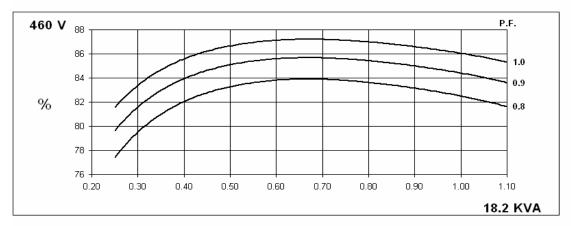


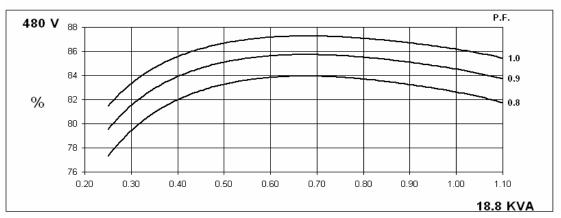

PI044G

Winding 311

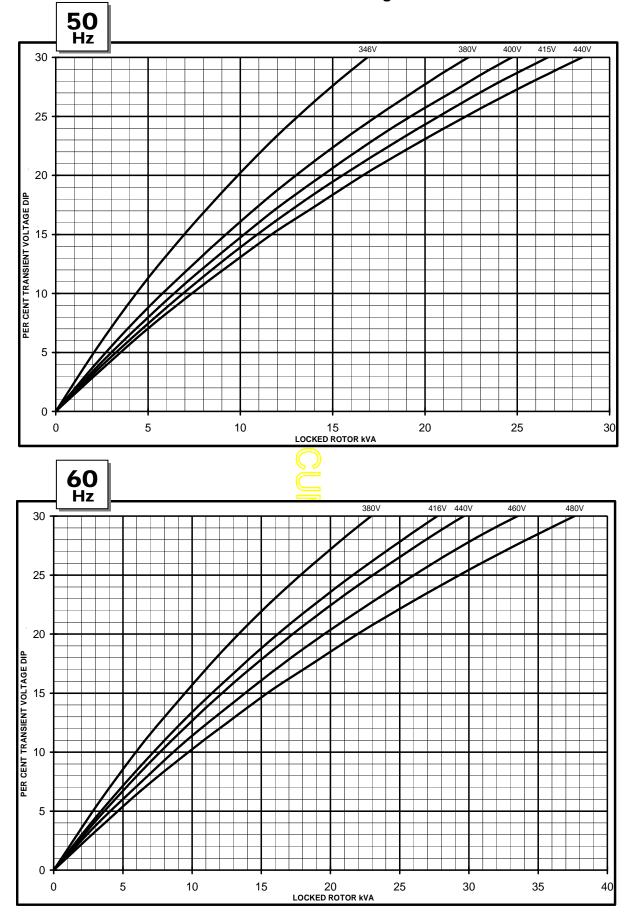



60 Hz

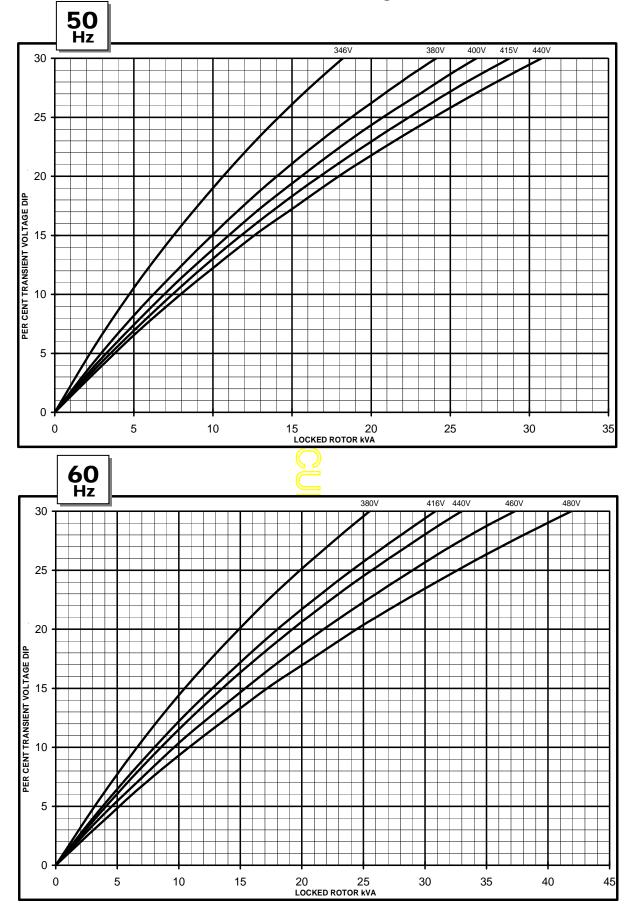

PI044G



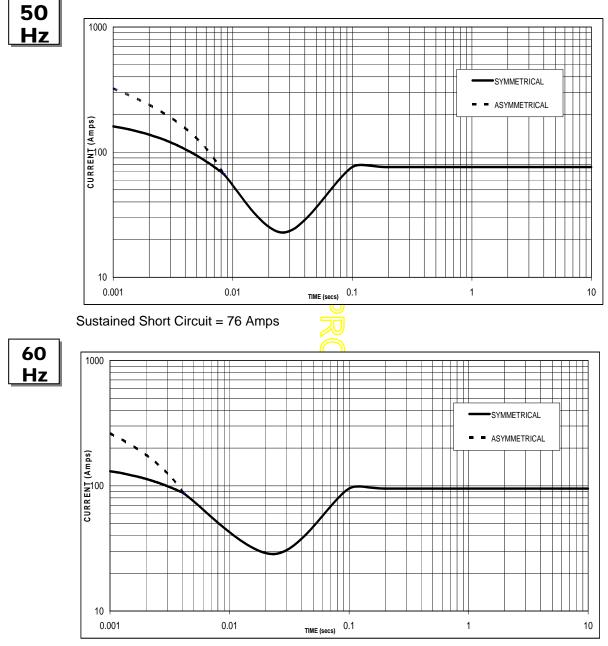
Winding 311



PI044G


Winding 311 AS480 AVR Without EBS Locked Rotor Motor Starting Curves

PI044G


Winding 311 AS480 AVR With EBS fitted Locked Rotor Motor Starting Curves

PI044G

WITH EBS FITTED Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 95 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60	Hz
Voltage	Factor	Voltage	Factor
380v	X 1.00	416v	X 1.00
400v	X 1.05	440v	X 1.06
415v	X 1.09	460v	X 1.10
440v	X 1.16	480v	X 1.15
The sustaine	d current val	ua is constan	t irrespective

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

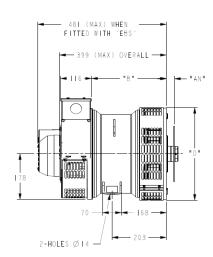
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

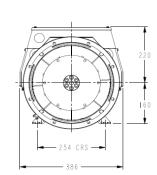
Note 3 Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2

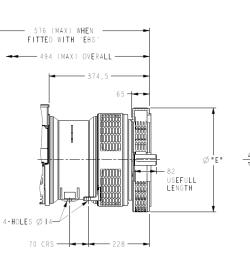
Series Delta = Curve current value X 1.732


STAMFORD

PI044G


Winding 311 / 0.8 Power Factor

	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	Sta	andby -	163/27	″°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	13.7	13.7	13.7	13.0	15.0	15.0	15.0	14.3	16.2	16.2	16.2	15.4	16.5	16.5	16.5	15.7
	kW	11.0	11.0	11.0	10.4	12.0	12.0	12.0	11.4	13.0	13.0	13.0	12.3	13.2	13.2	13.2	12.6
	Efficiency (%)	82.3	82.6	82.7	83.0	81.6	81.9	82.1	82.6	80.8	81.2	81.5	82.1	80.6	81.1	81.3	82.0
	kW Input	13.4	13.3	13.3	12.5	14.7	14.7	14.6	13.8	16.1	16.0	16.0	15.0	16.4	16.3	16.2	15.4
		_				-	7			_				-			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	15.1	16.1	16.6	17.1	16.5	17 <mark>.6</mark>	18.2	18.8	17.8	19.0	19.6	20.3	18.2	19.4	20.0	20.6
	kW	12.1	12.9	13.3	13.7	13.2	14.1	14.6	15.0	14.2	15.2	15.7	16.2	14.6	15.5	16.0	16.5
	Efficiency (%)	82.9	82.9	83.0	83.0	82.4	82 <mark>.3</mark>	82.4	82.4	81.8	81.7	81.8	81.8	81.6	81.5	81.6	81.7
	kW Input	14.6	15.6	16.0	16.5	16.0	17.1	ال 17.7	18.2	17.4	18.6	19.2	19.8	17.9	19.0	19.6	20.2
								J									

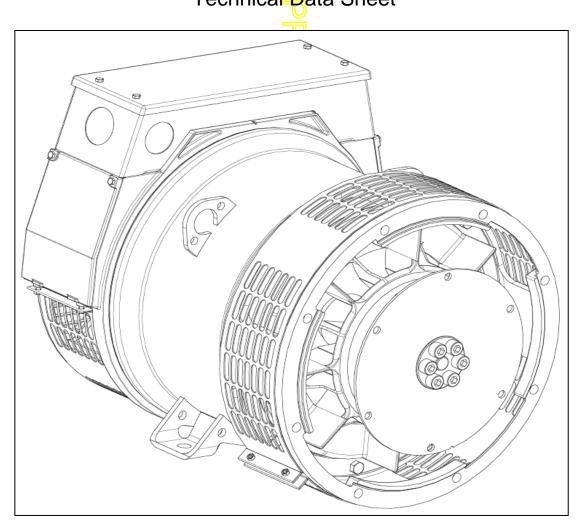

DIMENSIONS

COUPLI	NG DISC	I-BRG AD	APTOR
SAE	"AN"	SAE	"D"
6.5	30.2	5	361
7.5	30.2	4	405
8	62	3	45
10	53.8	2	489
11.5	39.6		

8-HOLES SPACED AS I2 8-HOLES SPACED AS I2

Ø 42,018 42,009

2-BRG A	DAPTORS
SAE	Ø "E"
5	359
4	406
3	455
2	493


Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

PI044H - Winding 311 Technical Data Sheet

PIO44H SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on

request.

VOLTAGE REGULATOR

AS480 AVR fitted as STANDARD

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling. The AS480 will support limited accessories, RFI suppession remote voltage trimmer and for the P1 range only a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

The AVR is can be fitted to either side of the generator in its own housing in the non-drive end bracket.

Excitation Boost System (EBS) (OPTIONAL)

The EBS is a single, self-contained unit, attached to the non-drive end of the generator.

The EBS unit consists of the Excitation Boost Controller (EBC) and an Excitation Boost Generator (EBG). Under fault conditions, or when the generator is subjected to a large impact load such as a motor starting, the generator voltage will drop. The EBC senses the drop in voltage and engages the output power of the EBG. This additional power feeds the generator's excitation system, supporting the load until breaker discrimination can remove the fault or enable the generator to pick up a motor and drive the voltage recovery.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted at the non-drive end of the generator. Dedicated single phase generators are also available. A sheet steel terminal box contains provides ample space for the customers' wiring and gland arrangements. Alternative terminal boxes are available for customers who want to fit additional components in the terminal box.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION / IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 9 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

5% For reverse rotation

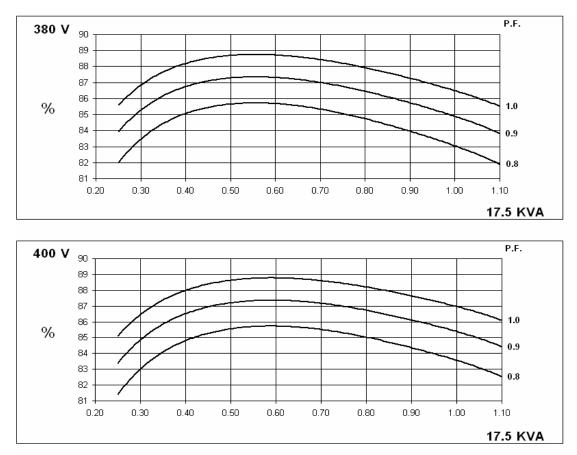
(Standard rotation CW when viewed from DE)

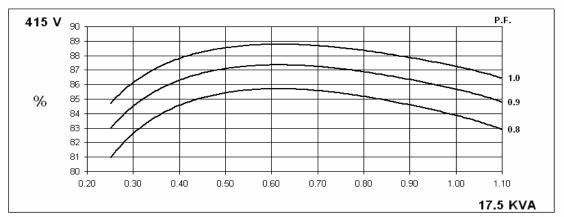
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

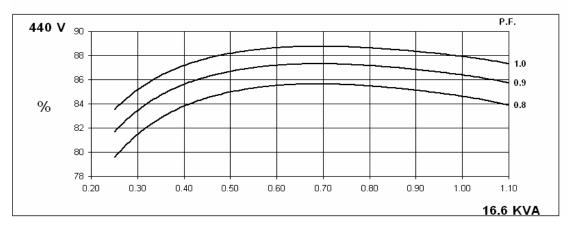
Front cover drawing typical of product range.

WINDING 311

CONTROL SYSTEM	STANDARD	AS480 AVI	R (SELF EXC	CITED)							
VOLTAGE REGULATION	± 1.0 %		(-	/							
SUSTAINED SHORT CIRCUIT		SELF EXCITED MACHINES DO NOT SUSTAIN A SHORT CIRCUIT CURRENT									
CONTROL SYSTEM			IONAL EXCI			M (ERS)					
						. ,					
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIR	CUIT DECR	EMENT CU	RVE (page 8	3)					
STATOR WINDING			DO	JBLE LAYEI	R CONCENT	RIC					
WINDING PITCH				TWO T	HIRDS						
WINDING LEADS				1	2						
STATOR WDG. RESISTANCE		0.506 O	hms PER PH	HASE AT 22	°C SERIES	STAR CON	NECTED				
ROTOR WDG. RESISTANCE				0.545 Ohn	ns at 22°C						
EXCITER STATOR RESISTANCE				18.5 Ohm	s at 22°C						
EXCITER ROTOR RESISTANCE			0.228	3 Ohms PER	PHASE AT	22°C					
EBS STATOR RESISTANCE				12.9 Ohm							
R.F.I. SUPPRESSION	DO EN	61000 E 2 P	BS EN 6100			0875N rofo	r to factory f	or othere			
WAVEFORM DISTORTION		NU LUAD <	1.5% NON-			U LINEAR L	LUAD < 5.0%	0			
MAXIMUM OVERSPEED					Rev/Min						
BEARING DRIVE END			~	BALL. 6309	- 2RS. (ISO)						
BEARING NON-DRIVE END			Q	BALL. 6306	- 2RS. (ISO))					
		1 BE/	ARING			2 BEARING					
	WITH	EBS	WITHOU	JT EBS	WITH	EBS	WITHOUT EBS				
WEIGHT COMP. GENERATOR	107	kg	105.3	kg	110	kg	108.3	kg			
WEIGHT WOUND STATOR	38	kg	38	kg	38	kg	38	kg			
WEIGHT WOUND ROTOR	37.51	37.51 kg 35.			38.51	kg	36.81	kg			
WR ² INERTIA	0.1374	kgm ²	0.1357	kgm ²	0.1375	kgm ²	0.1358	kgm ²			
SHIPPING WEIGHTS in a crate	124	kg	122.3	kg	133	kg	131.3	kg			
PACKING CRATE SIZE		71 x 51 :	x 67 (cm)			71 x 51 x	x 67 (cm)				
		50	Hz			60	Hz				
TELEPHONE INTERFERENCE			<2%				<50				
COOLING AIR			ec 233cfm				ec 286 cfm				
VOLTAGE SERIES STAR	380/220		415/240	440/254	416/240	440/254	460/266	480/277			
	190/110	200/115	208/120	220/127	208/120	220/127	230/133				
VOLTAGE PARALLEL STAR VOLTAGE SERIES DELTA	220/110	230/115	208/120	254/127	208/120	254/127	266/133	240/138 277/138			
kVA BASE RATING FOR REACTANCE											
VALUES	17.5	17.5	17.5	16.6	19.3	20.6	21.2	21.9			
Xd DIR. AXIS SYNCHRONOUS	1.82	1.64	1.52	1.29	2.16	2.06	1.94	1.84			
X'd DIR. AXIS TRANSIENT	0.19	0.17	0.16	0.13	0.22	0.21	0.20	0.19			
X"d DIR. AXIS SUBTRANSIENT	0.12	0.11	0.10	0.09	0.15	0.14	0.13	0.13			
	0.88	0.79	0.73	0.62	1.03	0.98	0.93	0.88			
X"q QUAD. AXIS SUBTRANSIENT XL LEAKAGE REACTANCE	0.19	0.17	0.16	0.13 0.05	0.23	0.22	0.21	0.20			
X2 NEGATIVE SEQUENCE	0.07	0.06	0.06	0.05	0.08	0.08	0.07	0.07			
X0ZERO SEQUENCE	0.10	0.14	0.13	0.05	0.19	0.10	0.08	0.08			
REACTANCES ARE SATURAT			LUES ARE								
T'd TRANSIENT TIME CONST.					13 s						
T"d SUB-TRANSTIME CONST.				0.0	03 s						
T'do O.C. FIELD TIME CONST.				0.3	81 s						
Ta ARMATURE TIME CONST.				0.0	07 s						
SHORT CIRCUIT RATIO				1/	Xd						

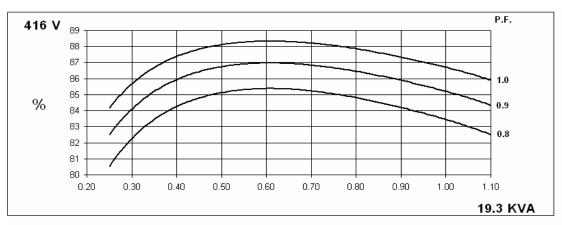


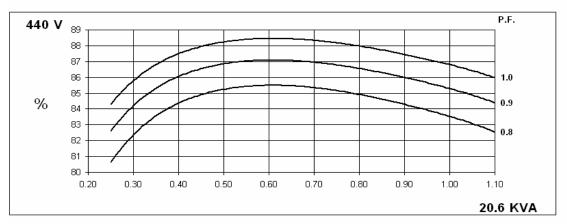


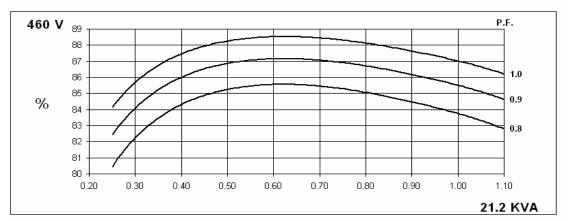

PI044H

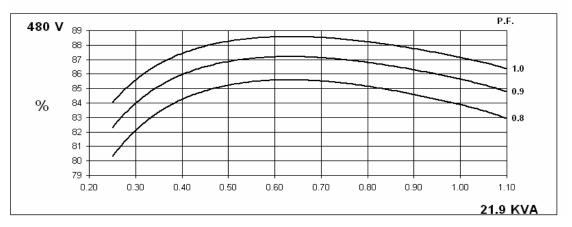
Winding 311

THREE PHASE EFFICIENCY CURVES

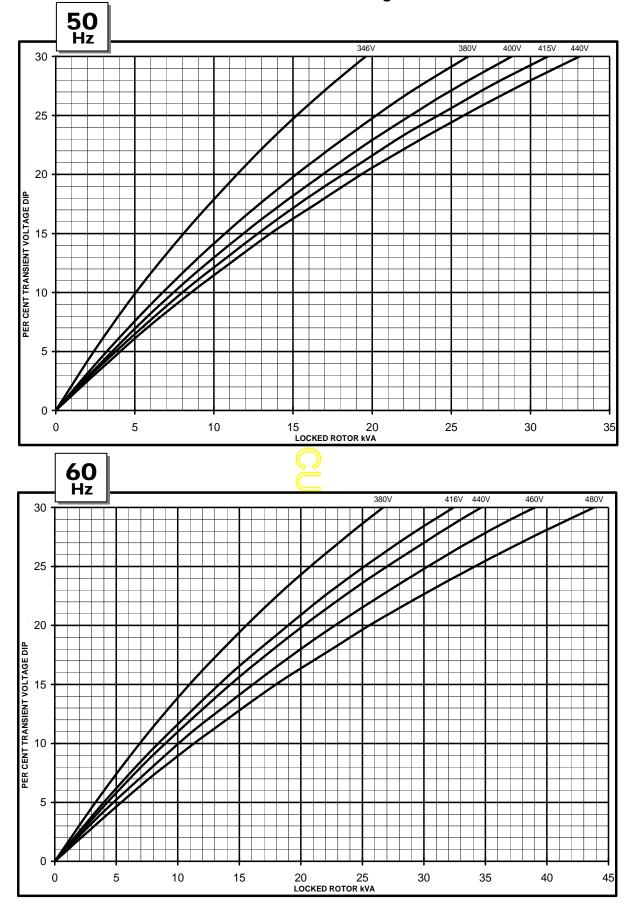


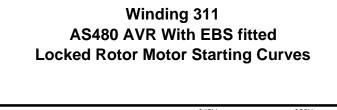


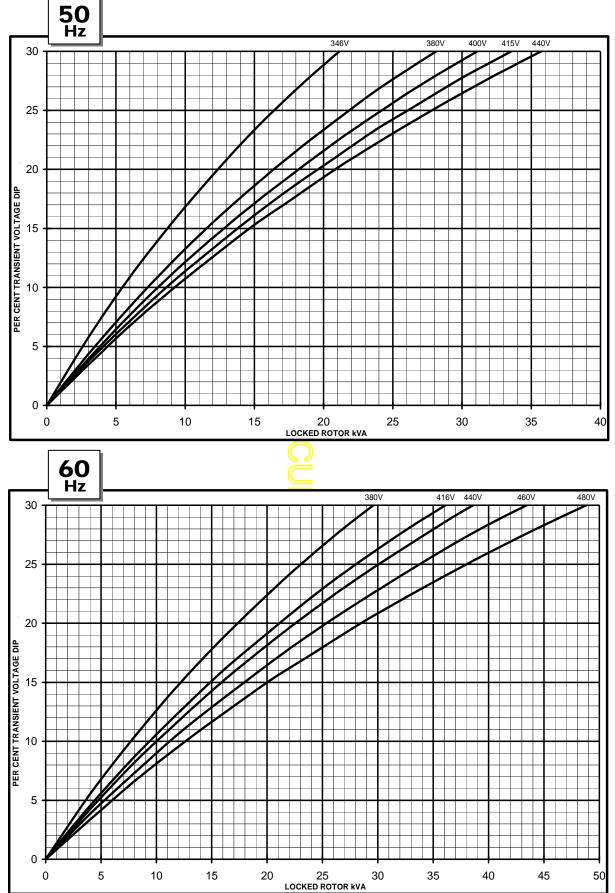

PI044H


Winding 311

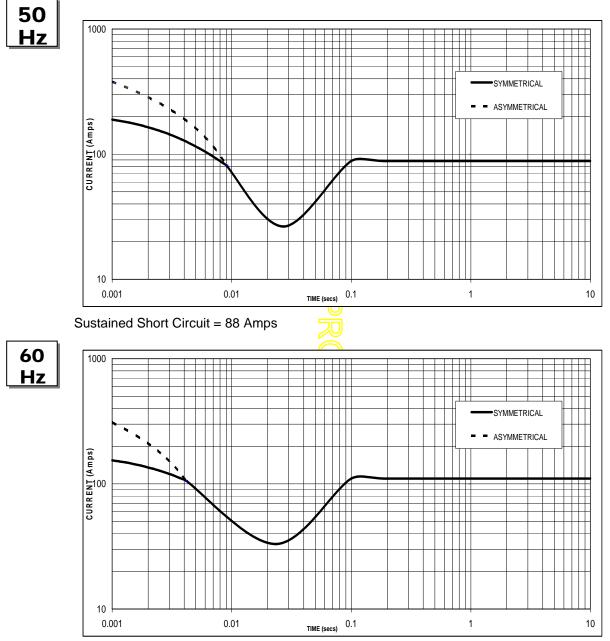
THREE PHASE EFFICIENCY CURVES







Winding 311 AS480 AVR Without EBS Locked Rotor Motor Starting Curves



WITH EBS FITTED Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 110 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60	Hz
Voltage	Factor	Voltage	Factor
380v	X 1.00	416v	X 1.00
400v	X 1.05	440v	X 1.06
415v	X 1.09	460v	X 1.10
440v	X 1.16	480v	X 1.15
The sustains	d current val	ua is constan	t irreenective

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

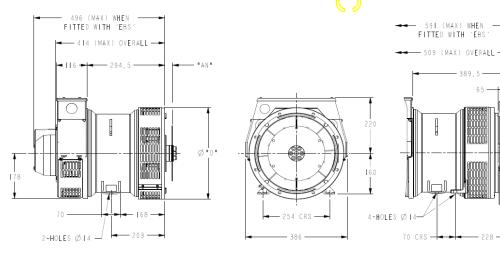
All other times are unchanged

Note 3 Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

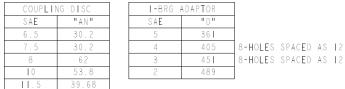
Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732

STAMFORD


PI044H

Winding 311 / 0.8 Power Factor


RATINGS

	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	Sta	andby -	163/27	°°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	16.0	16.0	16.0	15.2	17.5	17.5	17.5	16.6	18.9	18.9	18.9	18.0	19.3	19.3	19.3	18.3
	kW	12.8	12.8	12.8	12.2	14.0	14.0	14.0	13.3	15.1	15.1	15.1	14.4	15.4	15.4	15.4	14.6
	Efficiency (%)	83.9	84.3	84.4	84.8	83.2	83.6	83.8	84.4	82.3	82.8	83.1	83.9	82.1	82.6	82.9	83.8
	kW Input	15.3	15.2	15.2	14.4	16.8	16.7	16.7	15.8	18.3	18.2	18.2	17.2	18.8	18.6	18.6	17.4
		-				-				-				-			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	17.6	18.8	19.4	20.0	19.3	20.6	21.2	21.9	20.8	22.2	22.9	23.6	21.2	22.6	23.3	24.1
	kW	14.1	15.0	15.5	16.0	15.4	16.5	17.0	17.5	16.6	17.8	18.3	18.9	17.0	18.1	18.6	19.3
	Efficiency (%)	84.5	84.6	84.7	84.7	83.9	83 <mark>.9</mark>	84.1	84.1	83.3	83.2	83.4	83.5	83.1	83.1	83.2	83.3
	kW Input	16.7	17.7	18.3	18.9	18.4	19.7	9 20.2	20.8	19.9	21.4	21.9	22.6	20.5	21.8	22.4	23.2
								J									

DIMENSIONS

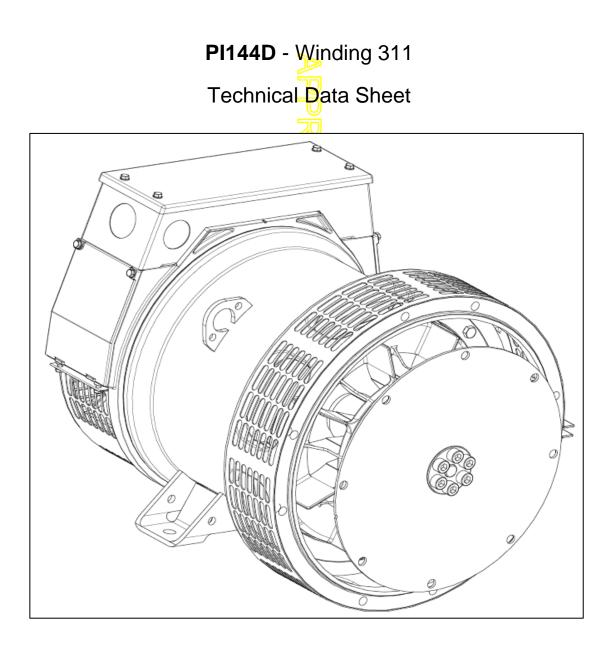
-Ø42,018

2-BRG /	ADAPTOR
SAE	"E"
5	359
4	406
3	455
2	493

USEFULL LENGTH

389,5

RUUUUU



Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on

request.

VOLTAGE REGULATOR

AS480 AVR fitted as STANDARD

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling. The AS480 will support limited accessories, RFI suppession remote voltage trimmer and for the P1 range only a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

The AVR is can be fitted to either side of the generator in its own housing in the non-drive end bracket.

Excitation Boost System (EBS) (OPTIONAL)

The EBS is a single, self-contained unit, attached to the non-drive end of the generator.

The EBS unit consists of the Excitation Boost Controller (EBC) and an Excitation Boost Generator (EBG). Under fault conditions, or when the generator is subjected to a large impact load such as a motor starting, the generator voltage will drop. The EBC senses the drop in voltage and engages the output power of the EBG. This additional power feeds the generator's excitation system, supporting the load until breaker discrimination can remove the fault or enable the generator to pick up a motor and drive the voltage recovery.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted at the non-drive end of the generator. Dedicated single phase generators are also available. A sheet steel terminal box contains provides ample space for the customers' wiring and gland arrangements. Alternative terminal boxes are available for customers who want to fit additional components in the terminal box.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION / IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 9 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

5% For reverse rotation

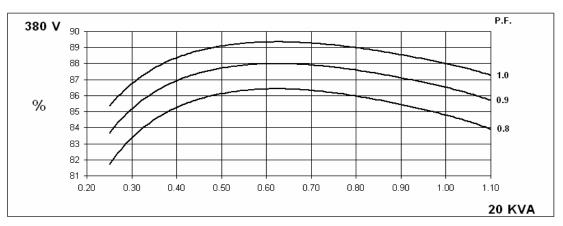
(Standard rotation CW when viewed from DE)

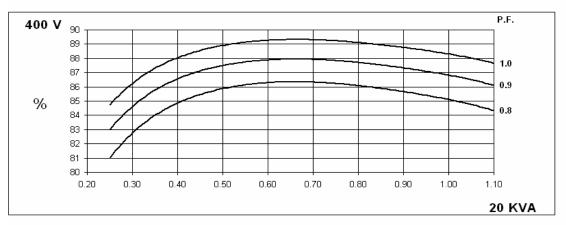
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

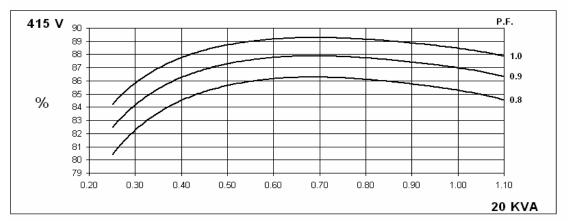
Front cover drawing typical of product range.

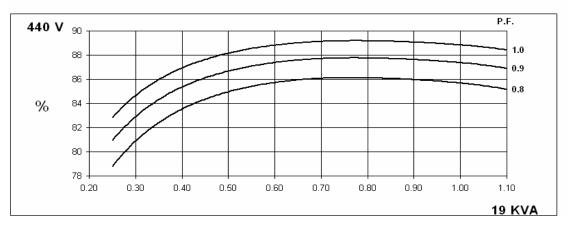
WINDING 311

STANDARD	AS480 AVI	R (SELF EXC	CITED)						
± 1.0 %									
SELF EXCI	TED MACHI	NES DO NO	T SUSTAIN	A SHORT C	IRCUIT CUI	RRENT			
AS480 AVR	WITH OPT	IONAL EXCI	TATION BO	OST SYSTE	M (EBS)				
REFER TO	SHORT CIR	RCUIT DECR	EMENT CU	RVE (page 8	3)				
		DOI	JBLE LAYEI	R CONCENT	RIC				
			1	2					
	0.377 O	hms PER PH			STAR CON	NECTED			
-		-	0.657 Ohr	ns at 22°C		-			
<u> </u>		0.000			2290				
		0.228		_	22°C				
	NO LOAD <	1.5% NON-	DISTORTIN	G BALANCE	D LINEAR L	_OAD < 5.0%	6		
			2250 F	Rev/Min					
			BALL. 6309	- 2RS. (ISO))				
		\bigcirc	BALL. 6306	- 2RS. (ISO))				
	1 BEA								
WITH	EBS		JT EBS	WITH	EBS	WITHOU	JT EBS		
120.5	kg	118.8	kg	123.5	kg	121.8	kg		
44	kg	U 44	44	kg	44	kg			
	•		-						
	0	\bigcirc	•		-		•		
	-		-		•		-		
150	0		ку	147	0	l	ĸġ		
<u> </u>						, ,			
	THF	<2%							
	0.100 m³/s				0.122 m ³ /s	ec 251 cfm	1		
380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277		
190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138		
220/110	230/115	24 <mark>0</mark> /120	254/127	240/120	254/127	266/133	277/138		
20	20	20	19	22	23.5	24.3	25		
1.66	1.50	1.39	1.18	1.97	1.88	1.78	1.68		
0.17	0.15	0.14	0.12	0.20	0.19	0.18	0.17		
0.11	0.10	0.09	0.08	0.13	0.12	0.12	0.11		
0.80	0.72	0.67	0.57	0.95	0.91	0.86	0.81		
0.18	0.16	0.15	0.13	0.21	0.20	0.19	0.18		
0.07	0.06	0.06	0.05	0.08	0.08	0.07	0.07		
0.14	0.13	0.12	0.10	0.17	0.16	0.15	0.15		
							0.07		
	VA	ALUES ARE			ND VOLTA	GE INDICAT	ED		
			0.0	17 s					
	0.004 s								
			0.3	04 s 38 s 07 s					
	± 1.0 % SELF EXCI [™] AS480 AVR REFER TO BSEN 0 BSEN 0 BSEN 0 BSEN 0 AU BSEN 0	± 1.0 % SELF EXCITED MACH AS480 AVR WITH OPT REFER TO SHORT CIF REFER TO SHORT CIF BS EN 61000-6-2 & O.377 C O.3	$\pm 1.0 \%$ SELF EXCITED MACHINES DO NO AS480 AVR WITH OPTIONAL EXCI REFER TO SHORT CIRCUIT DECR DOU DOU O.377 Ohms PER PH O.226 BS EN 61000-6-2 & BS EN 6100 NO LOAD < 1.5% NON-	SELF EXCITED MACHINES DO NOT SUSTAIN AS480 AVR WITH OPTIONAL EXCITATION BO REFER TO SHORT CIRCUIT DECREMENT CU DOUBLE LAYE TWO T O.0657 Ohr 0.377 Ohms PER PHASE AT 22 0.657 Ohr 0.657 Ohr 0.228 Ohms PER 12.9 Ohm BS EN 61000-6-4, VDE 0 NO LOAD < 1.5% NON-DISTORTIN 2250 F BALL. 6309 BALL. 6309 BALL. 6309 BALL. 6306 118.8 kg 44 kg 44 kg 44 kg 44 kg 44 kg 44 kg 138 kg 138 kg 118.5 67 cm) 50 Hz THF 27% 0.100 m³/sec 212cfm 380/220 40/2120 220/127 20 20 20 <th c<="" td=""><td>± 1.0 % SELF EXCITED MACHINES DO NOT SUSTAIN A SHORT O A\$480 AVR WITH OPTIONAL EXCITATION BOOST SYSTE REFER TO SHORT CIRCUIT DECREMENT CURVE (page 8 DOUBLE LAYER CONCENT TWO THIRDS 12 0.377 Ohms PER PHASE AT 22°C SERIES 0.657 Ohms at 22°C 18.5 Ohms at 22°C 0.228 Ohms PER PHASE AT 22°C SERIES 0.657 Ohms at 22°C BS EN 61000-6-2 & BS EN 61000-6-4, VDE 0875G, VDE NO LOAD < 1.5% NON-DISTORTING BALANCE 2250 Rev/Min BALL. 6309 - 2RS. (ISO) BALL. 6309 - 2RS. (ISO) 0 BALL. 6309 - 2RS. (ISO) 0 1 BEARING WITH EBS WITHOUT EBS WITH 120.5 kg 118.8 kg 123.5 44 kg 44 kg 44 kg 44 kg 44 kg 138.3 kg 136.3 kg 147 71 × 51 × 67 (cm) 50 Hz 138 kg 146 / 410 190/110 200/115 208/120 220/127 208/120 220/120 20 19 22 1.66 1.50 1.39 1.18 1.97 0.17 0.15 0.14 0.12 0.20 0.11 0.10 0.09 0.08 0.13 0.80 0.72 0.67 0.57 0.95 0.18 0.16 0.15 0.13 0.21 0.07 0.06 0.06 0.05 0.08 0.14 0.13 0.12 0.10 0.17 0.07 0.06 0.06 0.05 0.08 0.14 0.13 0.12 0.10 0.17 0.</td><td>± 1.0 % SELF EXCITED MACHINES DO NOT SUSTAIN A SHORT CIRCUIT CUI AS480 AVR WITH OPTIONAL EXCITATION BOOST SYSTEM (EBS) REFER TO SHORT CIRCUIT DECREMENT CURVE (page 8) DOUBLE LAYER CONCENTRIC TWO THIRDS 12 0.377 Ohms PER PHASE AT 22°C SERIES STAR CON 0.657 Ohms at 22°C 0.228 Ohms PER PHASE AT 22°C 0.228 Ohms PER PHASE AT 22°C DOUBLE LAYER CONCENTRIC 0.228 Ohms at 22°C BS EN 61000-6-4, VDE 0875G, VDE 0875N. refe NO LOAD < 1.5%</td> NO LOAD < 1.5%</th>	<td>± 1.0 % SELF EXCITED MACHINES DO NOT SUSTAIN A SHORT O A\$480 AVR WITH OPTIONAL EXCITATION BOOST SYSTE REFER TO SHORT CIRCUIT DECREMENT CURVE (page 8 DOUBLE LAYER CONCENT TWO THIRDS 12 0.377 Ohms PER PHASE AT 22°C SERIES 0.657 Ohms at 22°C 18.5 Ohms at 22°C 0.228 Ohms PER PHASE AT 22°C SERIES 0.657 Ohms at 22°C BS EN 61000-6-2 & BS EN 61000-6-4, VDE 0875G, VDE NO LOAD < 1.5% NON-DISTORTING BALANCE 2250 Rev/Min BALL. 6309 - 2RS. (ISO) BALL. 6309 - 2RS. (ISO) 0 BALL. 6309 - 2RS. (ISO) 0 1 BEARING WITH EBS WITHOUT EBS WITH 120.5 kg 118.8 kg 123.5 44 kg 44 kg 44 kg 44 kg 44 kg 138.3 kg 136.3 kg 147 71 × 51 × 67 (cm) 50 Hz 138 kg 146 / 410 190/110 200/115 208/120 220/127 208/120 220/120 20 19 22 1.66 1.50 1.39 1.18 1.97 0.17 0.15 0.14 0.12 0.20 0.11 0.10 0.09 0.08 0.13 0.80 0.72 0.67 0.57 0.95 0.18 0.16 0.15 0.13 0.21 0.07 0.06 0.06 0.05 0.08 0.14 0.13 0.12 0.10 0.17 0.07 0.06 0.06 0.05 0.08 0.14 0.13 0.12 0.10 0.17 0.</td> <td>± 1.0 % SELF EXCITED MACHINES DO NOT SUSTAIN A SHORT CIRCUIT CUI AS480 AVR WITH OPTIONAL EXCITATION BOOST SYSTEM (EBS) REFER TO SHORT CIRCUIT DECREMENT CURVE (page 8) DOUBLE LAYER CONCENTRIC TWO THIRDS 12 0.377 Ohms PER PHASE AT 22°C SERIES STAR CON 0.657 Ohms at 22°C 0.228 Ohms PER PHASE AT 22°C 0.228 Ohms PER PHASE AT 22°C DOUBLE LAYER CONCENTRIC 0.228 Ohms at 22°C BS EN 61000-6-4, VDE 0875G, VDE 0875N. refe NO LOAD < 1.5%</td> NO LOAD < 1.5%	± 1.0 % SELF EXCITED MACHINES DO NOT SUSTAIN A SHORT O A\$480 AVR WITH OPTIONAL EXCITATION BOOST SYSTE REFER TO SHORT CIRCUIT DECREMENT CURVE (page 8 DOUBLE LAYER CONCENT TWO THIRDS 12 0.377 Ohms PER PHASE AT 22°C SERIES 0.657 Ohms at 22°C 18.5 Ohms at 22°C 0.228 Ohms PER PHASE AT 22°C SERIES 0.657 Ohms at 22°C BS EN 61000-6-2 & BS EN 61000-6-4, VDE 0875G, VDE NO LOAD < 1.5% NON-DISTORTING BALANCE 2250 Rev/Min BALL. 6309 - 2RS. (ISO) BALL. 6309 - 2RS. (ISO) 0 BALL. 6309 - 2RS. (ISO) 0 1 BEARING WITH EBS WITHOUT EBS WITH 120.5 kg 118.8 kg 123.5 44 kg 44 kg 44 kg 44 kg 44 kg 138.3 kg 136.3 kg 147 71 × 51 × 67 (cm) 50 Hz 138 kg 146 / 410 190/110 200/115 208/120 220/127 208/120 220/120 20 19 22 1.66 1.50 1.39 1.18 1.97 0.17 0.15 0.14 0.12 0.20 0.11 0.10 0.09 0.08 0.13 0.80 0.72 0.67 0.57 0.95 0.18 0.16 0.15 0.13 0.21 0.07 0.06 0.06 0.05 0.08 0.14 0.13 0.12 0.10 0.17 0.07 0.06 0.06 0.05 0.08 0.14 0.13 0.12 0.10 0.17 0.	± 1.0 % SELF EXCITED MACHINES DO NOT SUSTAIN A SHORT CIRCUIT CUI AS480 AVR WITH OPTIONAL EXCITATION BOOST SYSTEM (EBS) REFER TO SHORT CIRCUIT DECREMENT CURVE (page 8) DOUBLE LAYER CONCENTRIC TWO THIRDS 12 0.377 Ohms PER PHASE AT 22°C SERIES STAR CON 0.657 Ohms at 22°C 0.228 Ohms PER PHASE AT 22°C 0.228 Ohms PER PHASE AT 22°C DOUBLE LAYER CONCENTRIC 0.228 Ohms at 22°C BS EN 61000-6-4, VDE 0875G, VDE 0875N. refe NO LOAD < 1.5%	± 1.0 % SELF EXCITED MACHINES DO NOT SUSTAIN A SHORT CIRCUIT CURRENT AS480 AVR WITH OPTIONAL EXCITATION BOOST SYSTEM (EBS) REFER TO SHORT CIRCUIT DECREMENT CURVE (page 8) DOUBLE LAYER CONCENTRIC TWO THIRDS 12 0.377 Ohms PER PHASE AT 22°C SERIES STAR CONNECTED 0.657 Ohms at 22°C 12.9 Ohms at 22°C 0.228 Ohms PER PHASE AT 22°C DOUBLE LAYER CONCENTRIC 0.228 Ohms PER PHASE AT 22°C 12.9 Ohms at 22°C BS EN 61000-6-4, VDE 0875G, VDE 0875N. refer to factory fr NOLOAD < 1.5%	

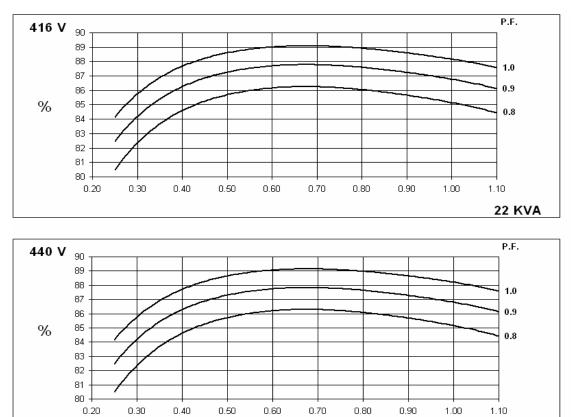


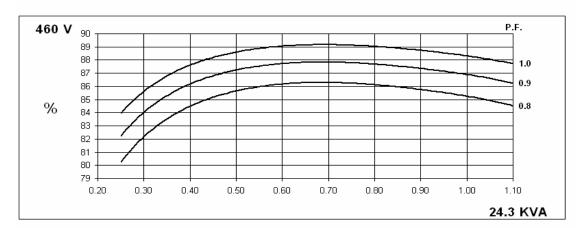


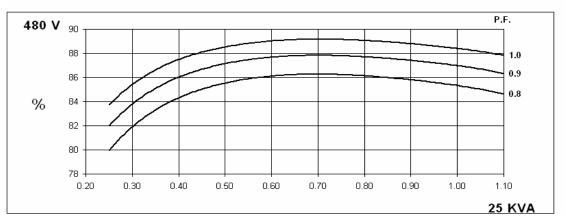

PI144D


Winding 311

THREE PHASE EFFICIENCY CURVES

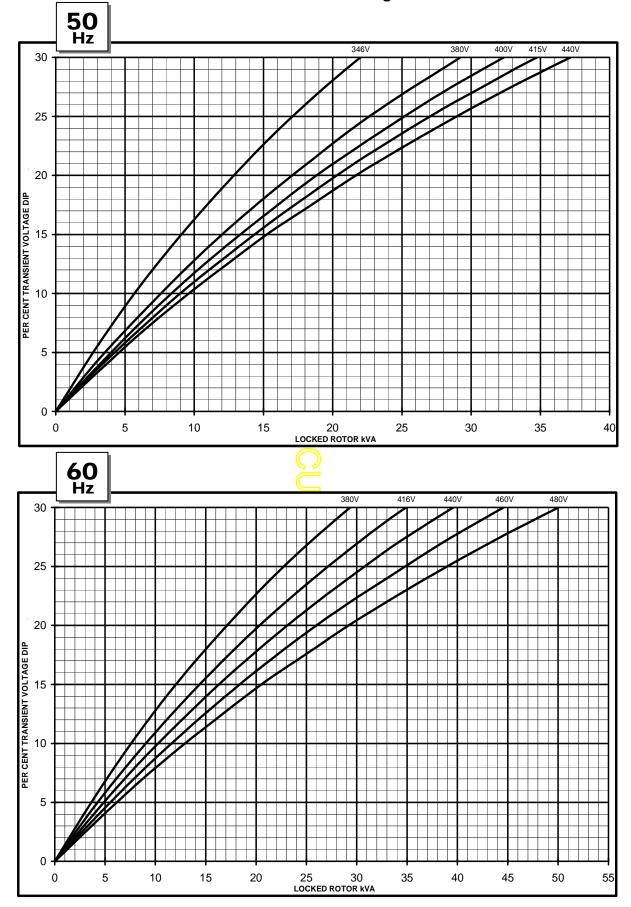

23.5 KVA

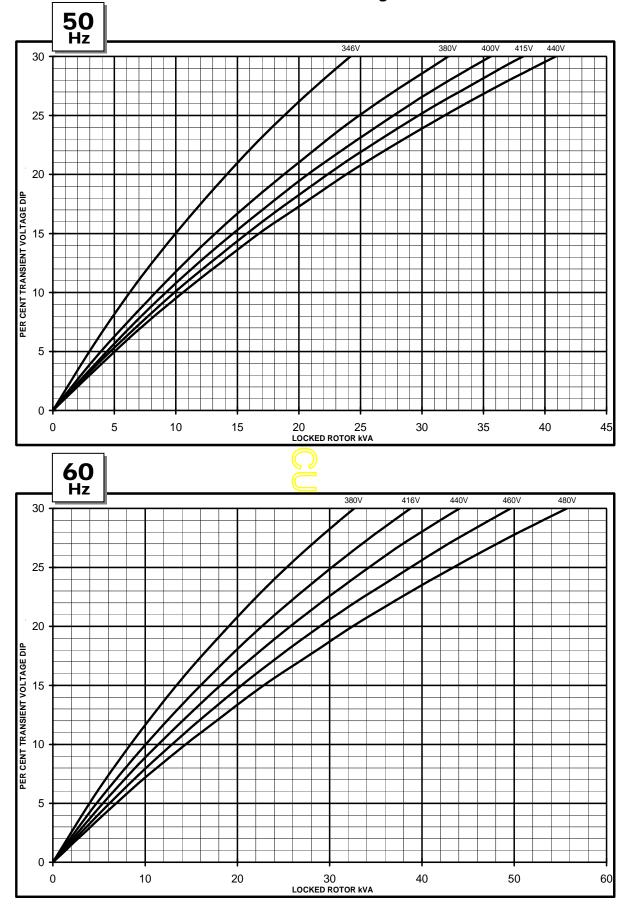



PI144D

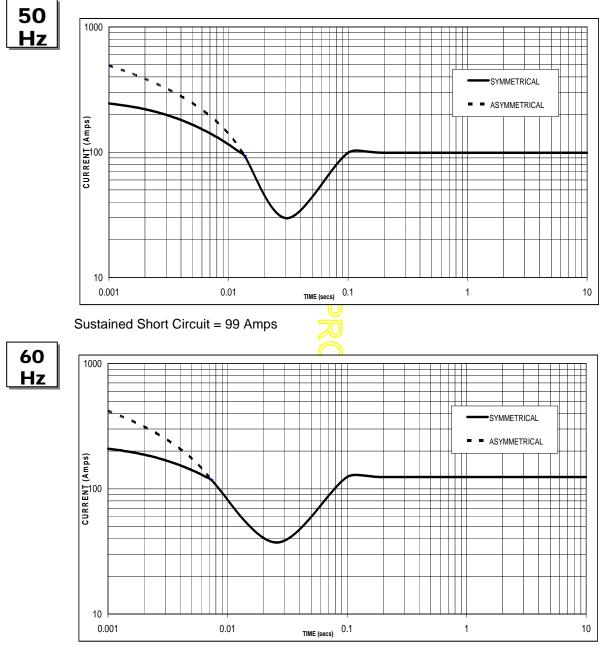
Winding 311

THREE PHASE EFFICIENCY CURVES





Winding 311 AS480 AVR Without EBS Locked Rotor Motor Starting Curves



Winding 311 AS480 AVR With EBS fitted Locked Rotor Motor Starting Curves

WITH EBS FITTED Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 124 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz						
Voltage	Factor	Voltage	Factor					
380v	X 1.00	416v	X 1.00					
400v	X 1.05	440v	X 1.06					
415v	X 1.09	460v	X 1.10					
440v	X 1.16	480v	X 1.15					
The sustains	d current val	ua is constan	t irrespective					

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

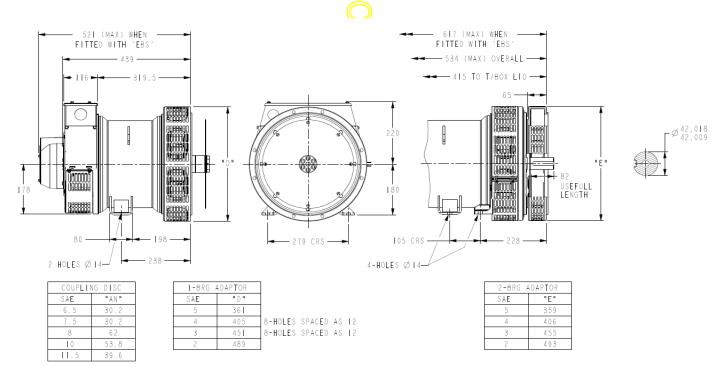
All other times are unchanged

Note 3 Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732

STAMFORD

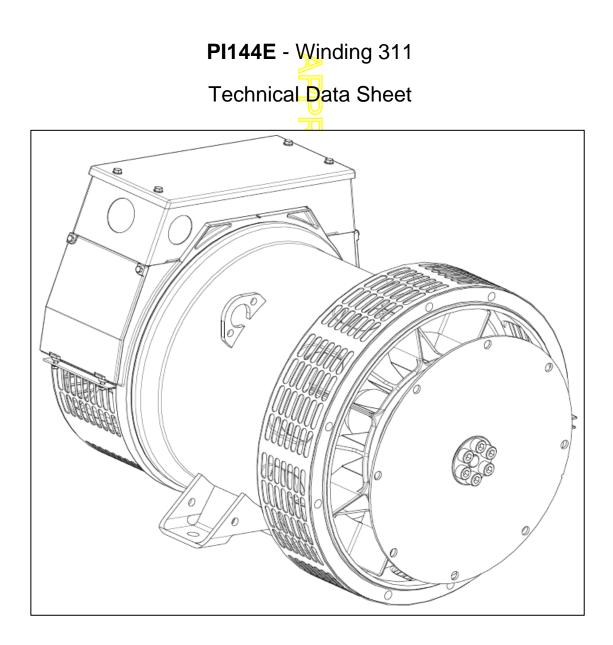

PI144D

Winding 311 / 0.8 Power Factor

RATI	NGS
------	-----

	Class - Temp Rise	C	ont. F -	105/40'	°C	Cont. H - 125/40°C				Standby - 150/40°C				Standby - 163/27°C			
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
Hz	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	18.2	18.2	18.2	17.3	20.0	20.0	20.0	19.0	21.5	21.5	21.5	20.4	22.0	22.0	22.0	20.9
	kW	14.6	14.6	14.6	13.8	16.0	16.0	16.0	15.2	17.2	17.2	17.2	16.3	17.6	17.6	17.6	16.7
	Efficiency (%)	85.4	85.7	85.8	86.0	84.8	85.1	85.3	85.7	84.2	84.6	84.8	85.4	84.0	84.4	84.6	85.2
	kW Input	17.0	17.0	17.0	16.1	18.9	18.8	18.8	17.7	20.4	20.3	20.3	19.1	21.0	20.9	20.8	19.6
		_				_	7			_				-			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	20.0	21.4	22.1	22.8	22.0	23 <mark>.5</mark>	24.3	25.0	23.7	25.3	26.1	26.9	24.2	25.9	26.7	27.5
	kW	16.0	17.1	17.7	18.2	17.6	18.8	19.4	20.0	19.0	20.2	20.9	21.5	19.4	20.7	21.4	22.0
	Efficiency (%)	85.6	85.7	85.7	85.8	85.1	85.2	85.3	85.3	84.6	84.6	84.8	84.8	84.5	84.5	84.6	84.7
	kW Input	18.7	20.0	20.6	21.3	20.7	22.1	22.8	23.4	22.4	23.9	24.6	25.4	22.9	24.5	25.3	26.0
								J									

DIMENSIONS



Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on

request.

VOLTAGE REGULATOR

AS480 AVR fitted as STANDARD

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling. The AS480 will support limited accessories, RFI suppession remote voltage trimmer and for the P1 range only a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

The AVR is can be fitted to either side of the generator in its own housing in the non-drive end bracket.

Excitation Boost System (EBS) (OPTIONAL)

The EBS is a single, self-contained unit, attached to the non-drive end of the generator.

The EBS unit consists of the Excitation Boost Controller (EBC) and an Excitation Boost Generator (EBG). Under fault conditions, or when the generator is subjected to a large impact load such as a motor starting, the generator voltage will drop. The EBC senses the drop in voltage and engages the output power of the EBG. This additional power feeds the generator's excitation system, supporting the load until breaker discrimination can remove the fault or enable the generator to pick up a motor and drive the voltage recovery.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted at the non-drive end of the generator. Dedicated single phase generators are also available. A sheet steel terminal box contains provides ample space for the customers' wiring and gland arrangements. Alternative terminal boxes are available for customers who want to fit additional components in the terminal box.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION / IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 9 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

5% For reverse rotation

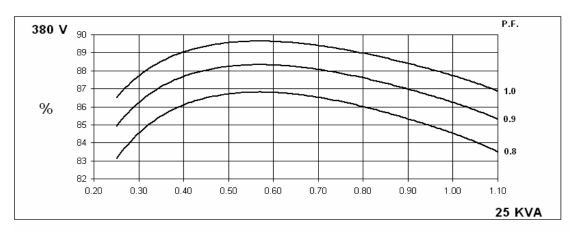
(Standard rotation CW when viewed from DE)

NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

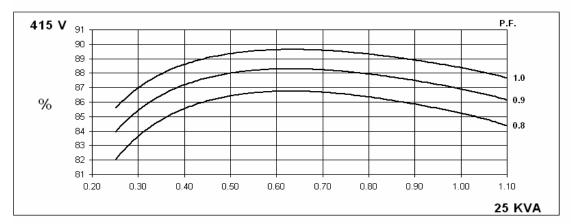
Front cover drawing typical of product range.

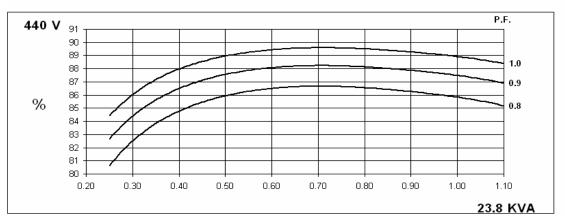
WINDING 311

CONTROL SYSTEM	STANDARD	AS480 AVI	R (SELF EXC	CITED)										
VOLTAGE REGULATION	± 1.0 %													
SUSTAINED SHORT CIRCUIT		TED MACHI	NES DO NO	T SUSTAIN	A SHORT C		RRENT							
CONTROL SYSTEM	AS480 AVR	WITH OPT	IONAL EXCI	TATION BO	OST SYSTE	M (EBS)								
SUSTAINED SHORT CIRCUIT						, ,								
STATOR WINDING						RIC								
	DOUBLE LAYER CONCENTRIC TWO THIRDS													
WINDING LEADS	12													
STATOR WDG. RESISTANCE	0.296 Ohms PER PHASE AT 22°C SERIES STAR CONNECTED													
		0.230 0		0.67 Ohm			NECTED							
ROTOR WDG. RESISTANCE														
EXCITER STATOR RESISTANCE				19.4 Ohm										
EXCITER ROTOR RESISTANCE			0.215	5 Ohms PER	R PHASE AT	22°C								
EBS STATOR RESISTANCE				12.9 Ohm	is at 22°C									
R.F.I. SUPPRESSION	BS EN	61000-6-2 &	BSEN 6100	0-6-4,VDE (0875G, VDE	0875N. refe	r to factory fo	or others						
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-	DISTORTIN	G BALANCE	D LINEAR L	OAD < 5.0%	, 0						
MAXIMUM OVERSPEED				2250 F	Rev/Min									
BEARING DRIVE END				BALL. 6309	- 2RS. (ISO)									
BEARING NON-DRIVE END			\bigcirc	BALL 6306	- 2RS. (ISO)									
		1 BE/	ARING	B/(22. 0000	2110. (100)		ARING							
	WITH	EBS		JT EBS	WITH	EBS	WITHOUT EBS							
WEIGHT COMP. GENERATOR	135 kg		133.3	kg	138		136.3 kg							
WEIGHT WOUND STATOR		kg		kg		kg	55 kg							
WEIGHT WOUND ROTOR	47.24	•	45.54	-	48.24	•	46.54 kg							
WR ² INERTIA	0.1771	-	0.1754	-	0.1772		0.1755 kgm ²							
SHIPPING WEIGHTS in a crate	152	-	150.3	•		•	159.3	•						
	152	0		ĸġ	161 kg 159.3 kg 71 x 51 x 67 (cm)									
PACKING CRATE SIZE			x 67 (cm)		60 Hz									
			Hz											
TELEPHONE INTERFERENCE			<2%			TIF<50								
COOLING AIR		0.100 m³/s	s <mark>ec 21</mark> 2cfm			0.122 m³/s	ec 251 cfm							
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277						
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138						
VOLTAGE SERIES DELTA	220/110	230/115	24 <mark>0</mark> /120	254/127	240/120	254/127	266/133	277/138						
kVA BASE RATING FOR REACTANCE VALUES	25	25	25	23.8	27.5	29.4	30.3	31.3						
Xd DIR. AXIS SYNCHRONOUS	1.78	1.61	1.50	1.27	2.11	2.02	1.90	1.80						
X'd DIR. AXIS TRANSIENT	0.17	0.15	0.14	0.12	0.19	0.18	0.17	0.16						
X"d DIR. AXIS SUBTRANSIENT	0.12	0.11	0.10	0.09	0.14	0.13	0.13	0.12						
Xq QUAD. AXIS REACTANCE	0.85	0.77	0.72	0.61	1.01	0.97	0.91	0.86						
X"q QUAD. AXIS SUBTRANSIENT	0.19	0.17	0.16	0.13	0.22	0.21	0.20	0.19						
	0.07	0.06	0.06	0.05	0.08	0.08	0.07	0.07						
	0.16	0.14	0.13	0.11	0.18	0.17	0.16	0.15						
X0ZERO SEQUENCE REACTANCES ARE SATURAT	0.08 FD	0.07 VA	0.07 LUES ARE	0.06 PER LINIT A	0.09 T RATING A	0.09	0.08 GE INDICAT	0.08 FD						
T'd TRANSIENT TIME CONST.		VF			19 s	UND VOLIA								
T''d SUB-TRANSTIME CONST.														
T'do O.C. FIELD TIME CONST.	0.005 s 0.45 s													
T'do O.C. FIELD TIME CONST. Ta ARMATURE TIME CONST.					07 s									

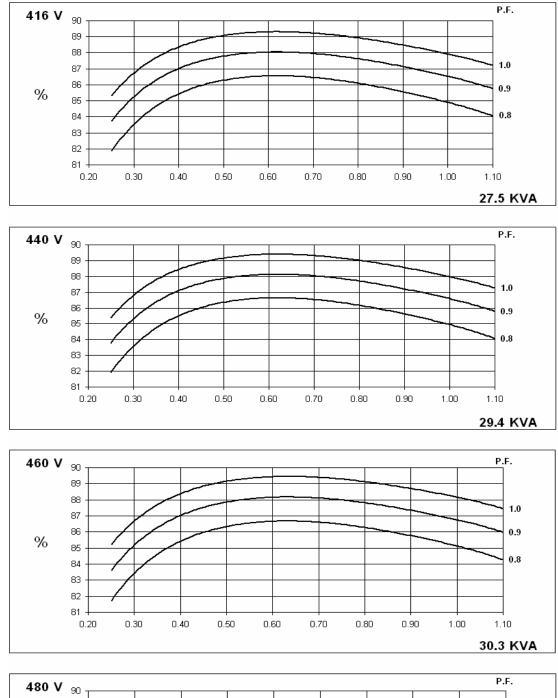


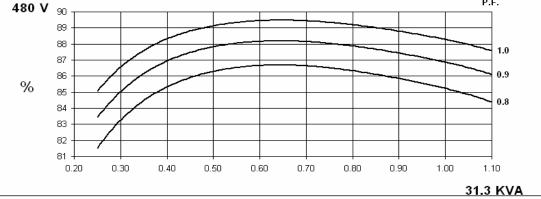
PI144E




Winding 311

THREE PHASE EFFICIENCY CURVES

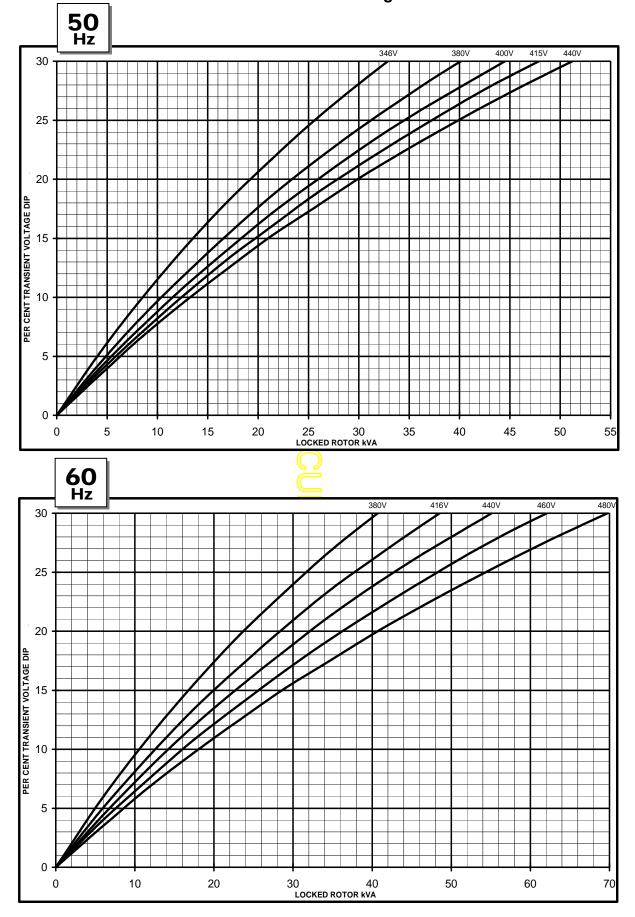




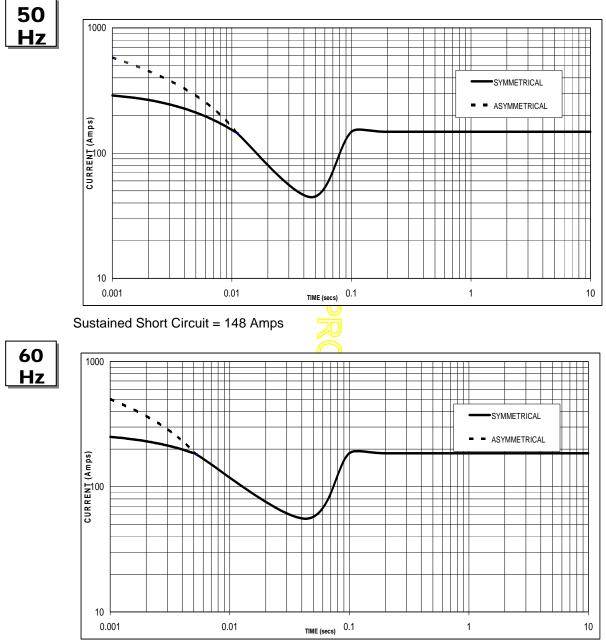
PI144E

Winding 311

THREE PHASE EFFICIENCY CURVES



Winding 311 AS480 AVR Without EBS Locked Rotor Motor Starting Curves



Winding 311 AS480 AVR With EBS fitted Locked Rotor Motor Starting Curves

WITH EBS FITTED Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 185 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	X 1.00	416v	X 1.00			
400v	X 1.05	440v	X 1.06			
415v	X 1.09	460v	X 1.10			
440v	X 1.16	480v	X 1.15			
The sustains	d current val	ua is constan	t irrespective			

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

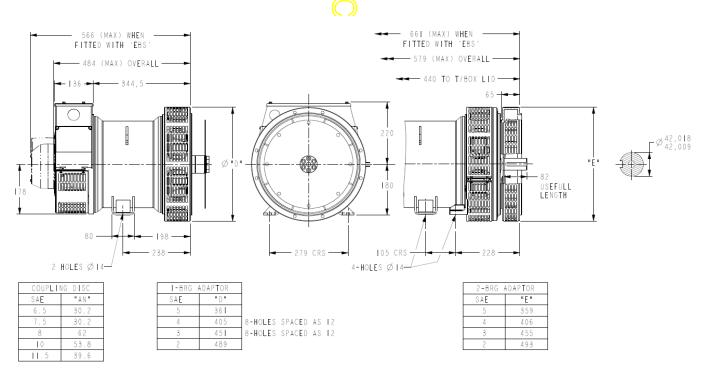
All other times are unchanged

Note 3 Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732

STAMFORD

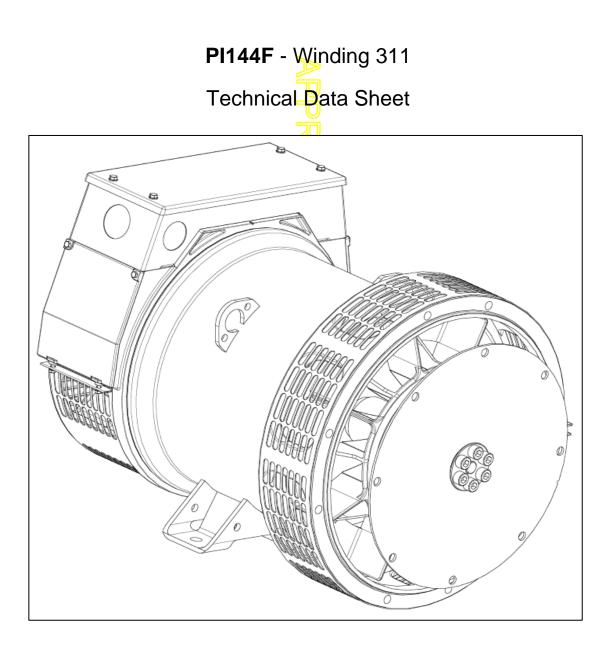

PI144E

Winding 311 / 0.8 Power Factor

RATIN	NGS
-------	-----

	Class - Temp Rise	C	ont. F -	105/40	°C	Cont. H - 125/40°C				Standby - 150/40°C				Standby - 163/27°C			
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	22.8	22.8	22.8	21.6	25.0	25.0	25.0	23.8	26.9	26.9	26.9	25.6	27.5	27.5	27.5	26.1
	kW	18.2	18.2	18.2	17.3	20.0	20.0	20.0	19.0	21.5	21.5	21.5	20.5	22.0	22.0	22.0	20.9
	Efficiency (%)	85.3	85.6	85.7	86.0	84.6	85.0	85.2	85.6	83.9	84.4	84.6	85.2	83.7	84.1	84.4	85.1
	kW Input	21.3	21.3	21.2	20.1	23.6	23.5	23.5	22.2	25.6	25.5	25.4	24.1	26.3	26.2	26.1	24.6
		_				-	7			_				_			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	25.0	26.7	27.6	28.4	27.5	29.4	30.3	31.3	29.6	31.6	32.6	33.6	30.3	32.3	33.3	34.4
	kW	20.0	21.4	22.1	22.7	22.0	23.5	24.2	25.0	23.7	25.3	26.1	26.9	24.2	25.8	26.6	27.5
	Efficiency (%)	85.9	85.9	85.9	86.0	85.3	85 <mark>.3</mark>	85.4	85.4	84.8	84.7	84.8	84.9	84.6	84.5	84.6	84.7
	kW Input	23.3	24.9	25.7	26.4	25.8	27.5	28.3	29.3	27.9	29.9	30.8	31.7	28.6	30.5	31.4	32.5
	kW Input 23.3 24.9 25.7 26.4 25.8 27.5 28.3 29.3 27.9 29.9 30.8 31.7 28.6 30.5 31.4 32.5																

DIMENSIONS



Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

PI144F

SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on

other standards and certifications can be considered on request.

VOLTAGE REGULATOR

AS480 AVR fitted as STANDARD

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling. The AS480 will support limited accessories, RFI suppession remote voltage trimmer and for the P1 range only a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

The AVR is can be fitted to either side of the generator in its own housing in the non-drive end bracket.

Excitation Boost System (EBS) (OPTIONAL)

The EBS is a single, self-contained unit, attached to the non-drive end of the generator.

The EBS unit consists of the Excitation Boost Controller (EBC) and an Excitation Boost Generator (EBG). Under fault conditions, or when the generator is subjected to a large impact load such as a motor starting, the generator voltage will drop. The EBC senses the drop in voltage and engages the output power of the EBG. This additional power feeds the generator's excitation system, supporting the load until breaker discrimination can remove the fault or enable the generator to pick up a motor and drive the voltage recovery.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted at the non-drive end of the generator. Dedicated single phase generators are also available. A sheet steel terminal box contains provides ample space for the customers' wiring and gland arrangements. Alternative terminal boxes are available for customers who want to fit additional components in the terminal box.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION / IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 9 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

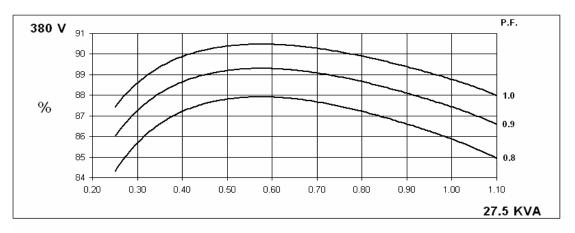
5% For reverse rotation

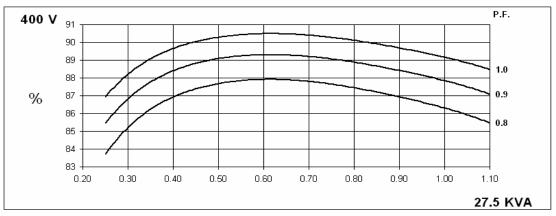
(Standard rotation CW when viewed from DE)

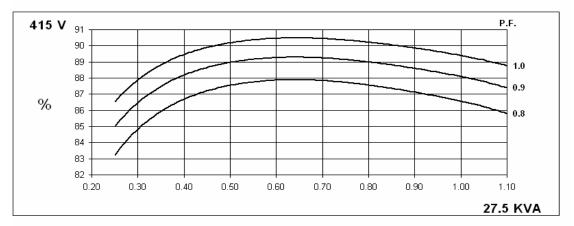
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

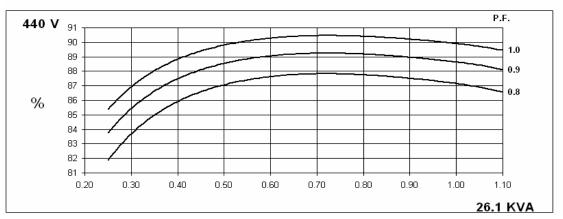
Front cover drawing typical of product range.

WINDING 311

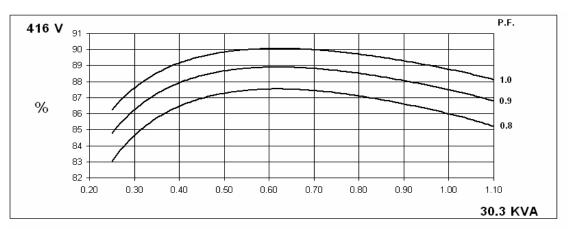

CONTROL SYSTEM	STANDARD	AS480 AVI	R (SELF EXC	CITED)					
VOLTAGE REGULATION	± 1.0 %								
SUSTAINED SHORT CIRCUIT	SELF EXCI	TED MACHI	NES DO NO	T SUSTAIN	A SHORT C	IRCUIT CUI	RRENT		
CONTROL SYSTEM	AS480 AVR	WITH OPT	IONAL EXCI	TATION BO	OST SYSTE	M (EBS)			
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIR	CUIT DECR	EMENT CU	RVE (page 8	3)			
STATOR WINDING	-		DOL	JBLE LAYEI	R CONCENT	RIC			
WINDING PITCH				TWO T	HIRDS				
WINDING LEADS				1	2				
STATOR WDG. RESISTANCE		0.265 O	hms PER PH	ASE AT 22	°C SERIES	STAR CON	NECTED		
ROTOR WDG. RESISTANCE				0.708 Ohn	ns at 22°C				
EXCITER STATOR RESISTANCE				20.3 Ohm	is at 22°C				
EXCITER ROTOR RESISTANCE			0.201		PHASE AT	22°C			
			0.20		-	22.0			
EBS STATOR RESISTANCE					is at 22°C				
R.F.I. SUPPRESSION			BS EN 6100						
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-	DISTORTIN	G BALANCE	D LINEAR L	_OAD < 5.0%	0	
MAXIMUM OVERSPEED				2250 F	Rev/Min				
BEARING DRIVE END				BALL. 6309	- 2RS. (ISO))			
BEARING NON-DRIVE END			\bigcirc	BALL. 6306	- 2RS. (ISO))			
	1 BEARING 2 BEARIN						ARING		
	WITH	EBS	WITHOU	JT EBS	WITH	EBS	WITHOU	JT EBS	
WEIGHT COMP. GENERATOR	143.5	kg	141.8	kg	146.5	kg	144.8	kg	
WEIGHT WOUND STATOR	58	kg	58	kg	58	kg	58	kg	
WEIGHT WOUND ROTOR	50.45	ka	48.75	-	51.45	-	49.75	ka	
WR ² INERTIA	0.1903	0	0.1886	•	0.1904	0	0.1887	•	
SHIPPING WEIGHTS in a crate	161	•	159.3	÷	170	•	168.3	-	
PACKING CRATE SIZE		0	x 67 (cm)		85 x 51 x 67 (cm)				
			Hz				Hz		
TELEPHONE INTERFERENCE			<2%		TIF<50				
COOLING AIR		0.100 m³/s	ec 212cfm				ec 251 cfm	1	
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277	
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138	
VOLTAGE SERIES DELTA	220/110	230/115	24 <mark>0</mark> /120	254/127	240/120	254/127	266/133	277/138	
kVA BASE RATING FOR REACTANCE VALUES	27.5	27.5	27.5	26.1	30.3	32.3	33.3	34.4	
Xd DIR. AXIS SYNCHRONOUS	1.83	1.65	1.53	1.29	2.18	2.08	1.96	1.86	
X'd DIR. AXIS TRANSIENT	0.17	0.15	0.14	0.12	0.20	0.19	0.18	0.17	
X"d DIR. AXIS SUBTRANSIENT	0.12	0.11	0.10	0.09	0.15	0.14	0.13	0.13	
Xq QUAD. AXIS REACTANCE	0.88	0.79	0.73	0.62	1.04	0.99	0.93	0.89	
X"q QUAD. AXIS SUBTRANSIENT	0.19	0.17	0.16	0.13	0.23	0.22	0.21	0.20	
XL LEAKAGE REACTANCE	0.07	0.06	0.06	0.05	0.08	0.08	0.07	0.07	
	0.16	0.14	0.13	0.11	0.19	0.18	0.17	0.16	
X0 ZERO SEQUENCE REACTANCES ARE SATURAT	0.08	0.07	0.07 LUES ARE	0.05 DED LINIT A	0.09			0.08	
	ED	VP	LUES ARE					ED	
T'd TRANSIENT TIME CONST.	0.021 s								
T"A SUB-TRANSTIME CONST	0.005 s								
T"d SUB-TRANSTIME CONST.									
T"d SUB-TRANSTIME CONST. T'do O.C. FIELD TIME CONST. Ta ARMATURE TIME CONST.				0.4	l8 s 07 s				

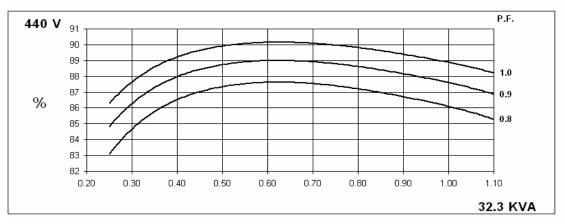

50 Hz

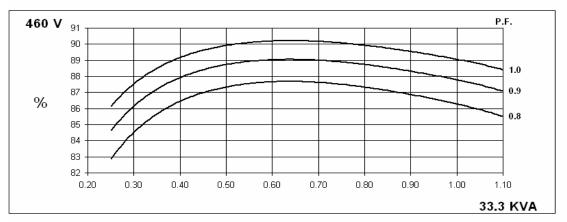

PI144F

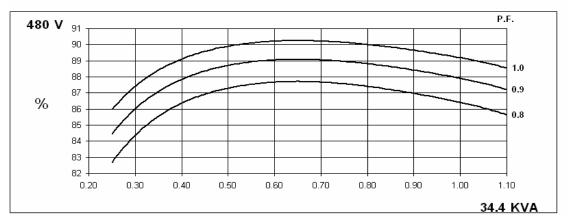


Winding 311

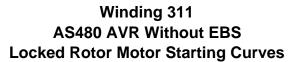


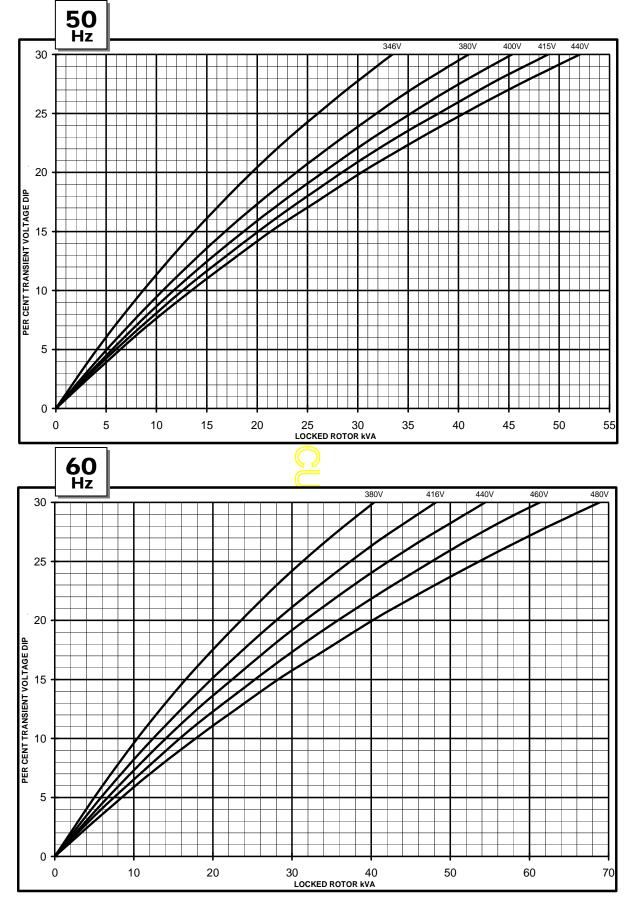


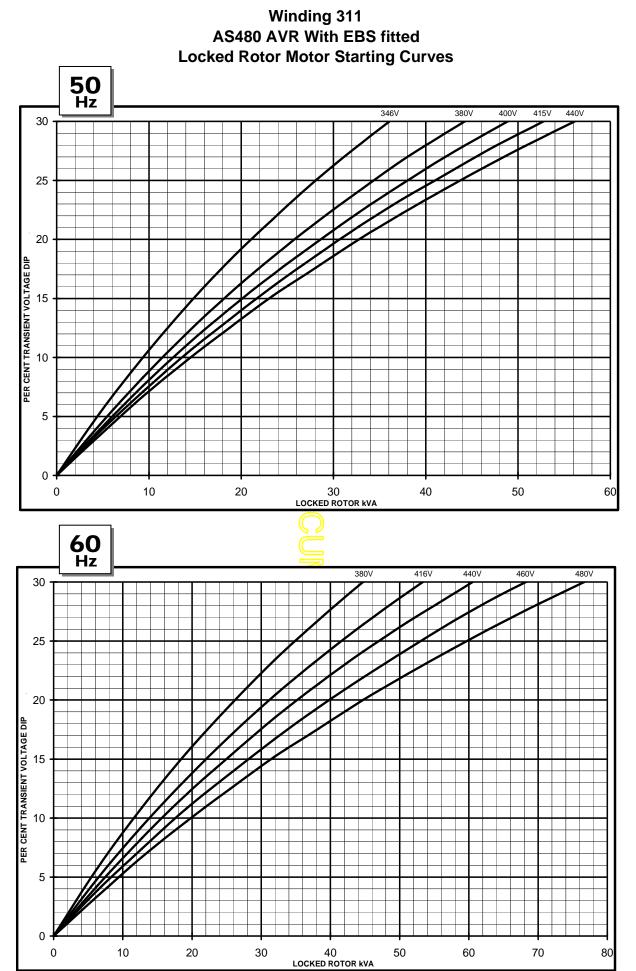


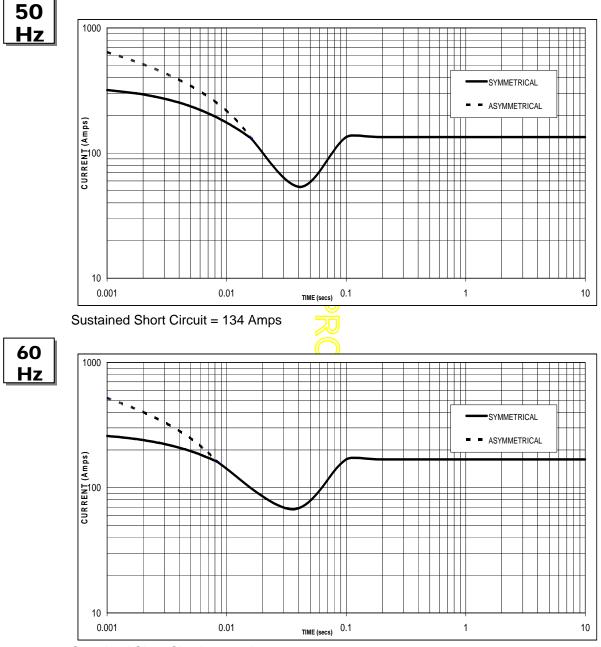

PI144F

Winding 311









WITH EBS FITTED Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 168 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60	Hz		
Voltage	Factor	Voltage	Factor		
380v	X 1.00	416v	X 1.00		
400v	X 1.05	440v	X 1.06		
415v	X 1.09	460v	X 1.10		
440v	X 1.16	480v	X 1.15		
The sustaine	d current val	ua is constan	t irrespective		

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3 Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732

STAMFORD

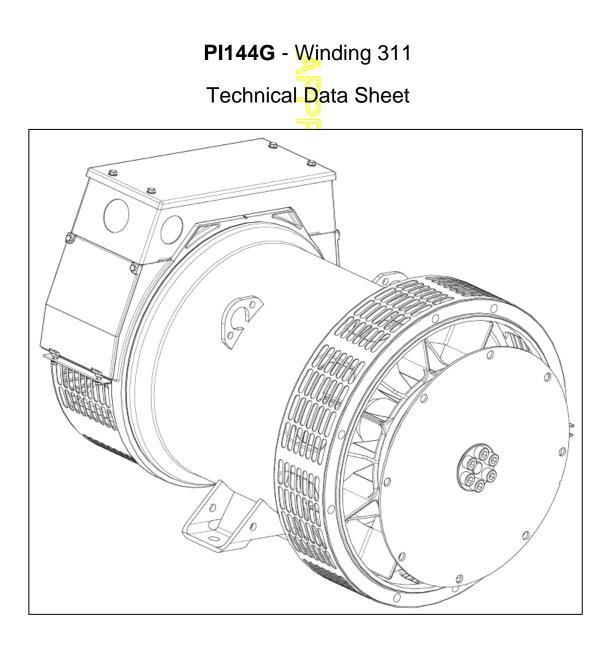
PI144F

Winding 311 / 0.8 Power Factor

RATI	NGS
------	-----

	NATINOS																
	Class - Temp Rise	C	ont. F -	105/40'	õ	Co	ont. H -	125/40	ç	St	andby -	150/40	°C	St	andby -	163/27	°°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
Hz	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	25.0	25.0	25.0	23.8	27.5	27.5	27.5	26.1	29.6	29.6	29.6	28.1	30.3	30.3	30.3	28.7
	kW	20.0	20.0	20.0	19.0	22.0	22.0	22.0	20.9	23.7	23.7	23.7	22.5	24.2	24.2	24.2	23.0
	Efficiency (%)	86.6	86.9	87.0	87.3	86.0	86.3	86.5	87.0	85.3	85.8	86.0	86.6	85.1	85.6	85.8	86.5
	kW Input	23.1	23.0	23.0	21.8	25.6	25.5	25.4	24.0	27.8	27.6	27.6	26.0	28.4	28.3	28.2	26.6
		-				-				-				-			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	27.5	29.4	30.3	31.3	30.3	32 <mark>.3</mark>	33.3	34.4	32.6	34.8	35.9	37.0	33.3	35.5	36.7	37.8
	kW	22.0	23.5	24.2	25.0	24.2	25.8	26.6	27.5	26.1	27.8	28.7	29.6	26.6	28.4	29.4	30.2
	Efficiency (%)	86.9	87.0	87.1	87.1	86.4	86.4	86.6	86.6	85.9	85.9	86.0	86.1	85.7	85.7	85.9	85.9
	kW Input	25.3	27.0	27.8	28.7	28.0	29.9	30.7	31.8	30.4	32.4	33.4	34.4	31.0	33.1	34.2	35.2
								J									

DIMENSIONS



Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on

other standards and certifications can be considered on request.

VOLTAGE REGULATOR

AS480 AVR fitted as STANDARD

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling. The AS480 will support limited accessories, RFI suppession remote voltage trimmer and for the P1 range only a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

The AVR is can be fitted to either side of the generator in its own housing in the non-drive end bracket.

Excitation Boost System (EBS) (OPTIONAL)

The EBS is a single, self-contained unit, attached to the non-drive end of the generator.

The EBS unit consists of the Excitation Boost Controller (EBC) and an Excitation Boost Generator (EBG). Under fault conditions, or when the generator is subjected to a large impact load such as a motor starting, the generator voltage will drop. The EBC senses the drop in voltage and engages the output power of the EBG. This additional power feeds the generator's excitation system, supporting the load until breaker discrimination can remove the fault or enable the generator to pick up a motor and drive the voltage recovery.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted at the non-drive end of the generator. Dedicated single phase generators are also available. A sheet steel terminal box contains provides ample space for the customers' wiring and gland arrangements. Alternative terminal boxes are available for customers who want to fit additional components in the terminal box.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION / IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 9 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

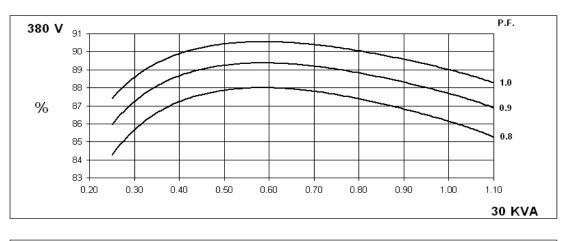
5% For reverse rotation

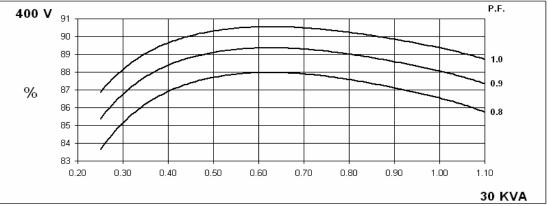
(Standard rotation CW when viewed from DE)

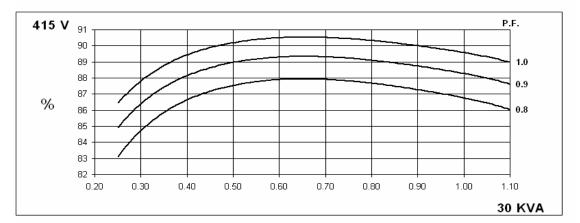
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

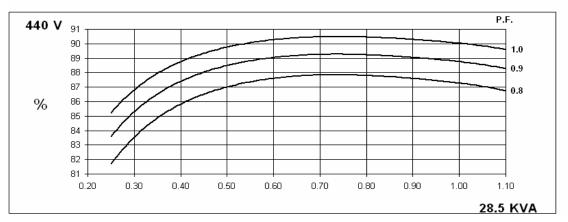
Front cover drawing typical of product range.

WINDING 311

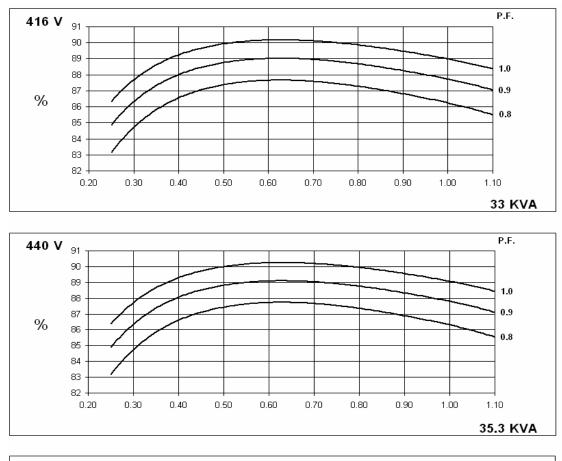

CONTROL SYSTEM	STANDARD	AS480 AVI	R (SELF EXC	CITED)					
VOLTAGE REGULATION	± 1.0 %		(-	/					
SUSTAINED SHORT CIRCUIT		TED MACHI	NES DO NO	T SUSTAIN	A SHORT C		RRENT		
CONTROL SYSTEM			IONAL EXCI			M (ERS)			
						. ,			
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIR	CUIT DECR	EMENT CU	RVE (page 8	3)			
STATOR WINDING			DO	JBLE LAYEI	R CONCENT	RIC			
WINDING PITCH				TWO T	HIRDS				
WINDING LEADS				1	2				
STATOR WDG. RESISTANCE		0.222 O	hms PER PH	HASE AT 22	°C SERIES	STAR CON	NECTED		
ROTOR WDG. RESISTANCE				0.857 Ohn	ns at 22°C				
EXCITER STATOR RESISTANCE				20.3 Ohm	s at 22°C				
EXCITER ROTOR RESISTANCE			0.202	Ohms PER	PHASE AT	22°C			
EBS STATOR RESISTANCE				12.9 Ohm		-			
R.F.I. SUPPRESSION	BO EN	61000 6 2 9	BS EN 6100			0875N rofo	r to factory f	or othere	
		NU LUAD <	1.5% NON-			U LINEAR L	UAD < 5.0%	0	
					Rev/Min				
BEARING DRIVE END			8	BALL. 6309	- 2RS. (ISO)				
BEARING NON-DRIVE END			Q	BALL. 6306	- 2RS. (ISO)				
	1 BEARING 2 BEARING						ARING		
	WITH	EBS	WITHOU	JT EBS	WITH	EBS	WITHOU	JT EBS	
WEIGHT COMP. GENERATOR	160	kg	158.3	kg	163	kg	161.3	kg	
WEIGHT WOUND STATOR	68	kg	68	kg	68	kg	68	kg	
WEIGHT WOUND ROTOR	57.39	kg	55.68	kg	58.39	kg	56.69	kg	
WR ² INERTIA	0.2196	kgm ²	0.2179	kgm ²	0.2198	kgm ²	0.2181	kgm ²	
SHIPPING WEIGHTS in a crate	178	kg	176.3	kg	187	kg	185.3	kg	
PACKING CRATE SIZE		85 x 51 :	x 67 (cm)		85 x 51 x 67 (cm)				
		50	Hz			60	Hz		
TELEPHONE INTERFERENCE			<2%		TIF<50				
COOLING AIR			sec 212cfm		0.122 m³/sec 251 cfm				
VOLTAGE SERIES STAR	380/220		415/240	440/254	416/240	440/254	460/266	480/277	
VOLTAGE PARALLEL STAR VOLTAGE SERIES DELTA	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138	
kVA BASE RATING FOR REACTANCE	220/110	230/115	24 <mark>0</mark> /120	254/127	240/120	254/127	266/133	277/138	
VALUES	30	30	30	28.5	33	35.3	36.4	37.5	
Xd DIR. AXIS SYNCHRONOUS	1.74	1.57	1.46	1.23	2.06	1.97	1.86	1.76	
X'd DIR. AXIS TRANSIENT	0.16	0.14	0.13	0.11	0.19	0.18	0.17	0.16	
X"d DIR. AXIS SUBTRANSIENT	0.12	0.11	0.10	0.09	0.14	0.13	0.13	0.12	
Xq QUAD. AXIS REACTANCE	0.83	0.75	0.70	0.59	0.99	0.95	0.89	0.85	
X"q QUAD. AXIS SUBTRANSIENT	0.18	0.16	0.15	0.13	0.21	0.20	0.19	0.18	
XL LEAKAGE REACTANCE X2 NEGATIVE SEQUENCE	0.07	0.06	0.06	0.05	0.08	0.08	0.07	0.07	
X0ZERO SEQUENCE	0.16 0.07	0.14	0.13	0.11 0.05	0.18	0.17	0.16	0.15	
REACTANCES ARE SATURAT			LUES ARE						
T'd TRANSIENT TIME CONST.	·	.,			24 s			-	
T"d SUB-TRANSTIME CONST.					06 s				
T'do O.C. FIELD TIME CONST.				0.5	5 s				
Ta ARMATURE TIME CONST.				0.0	07 s				
SHORT CIRCUIT RATIO				1/	Xd				

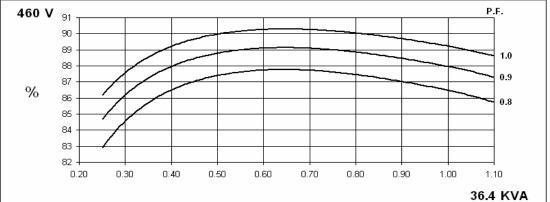


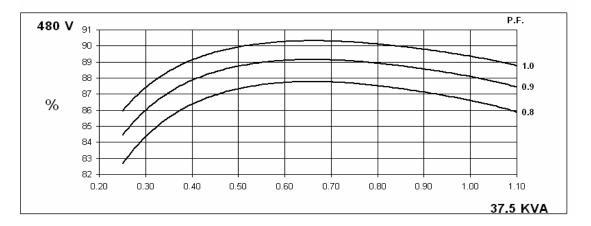

PI144G



Winding 311

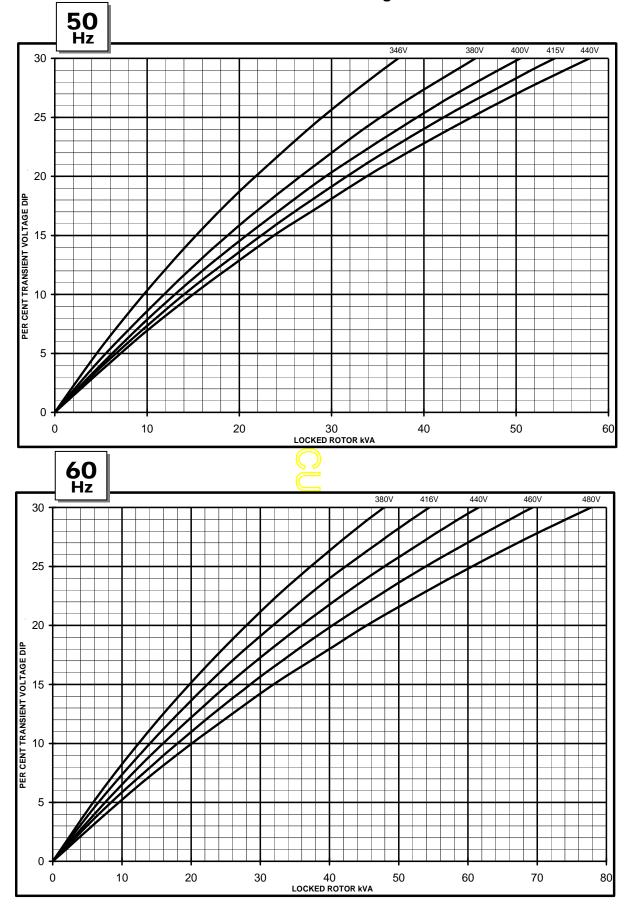


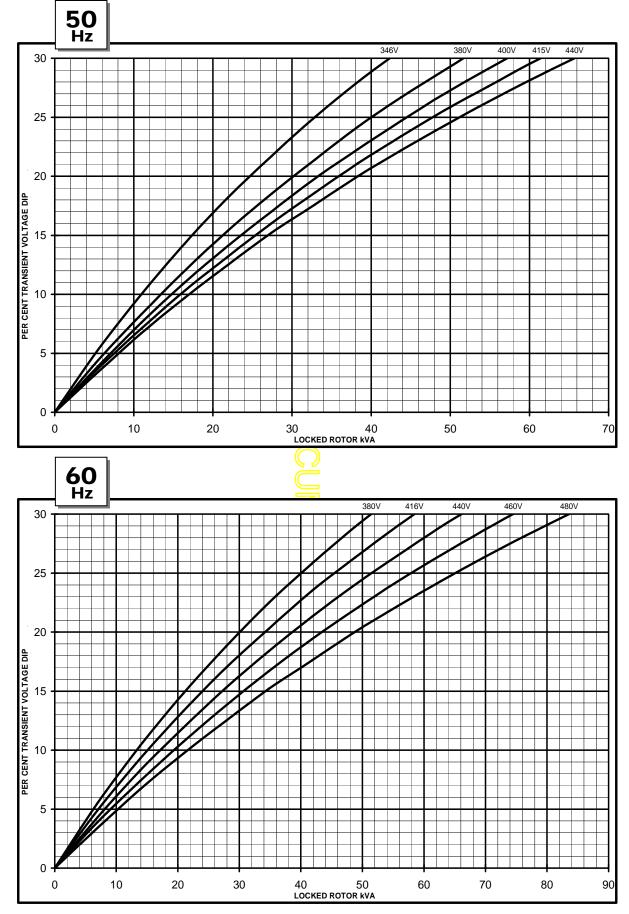




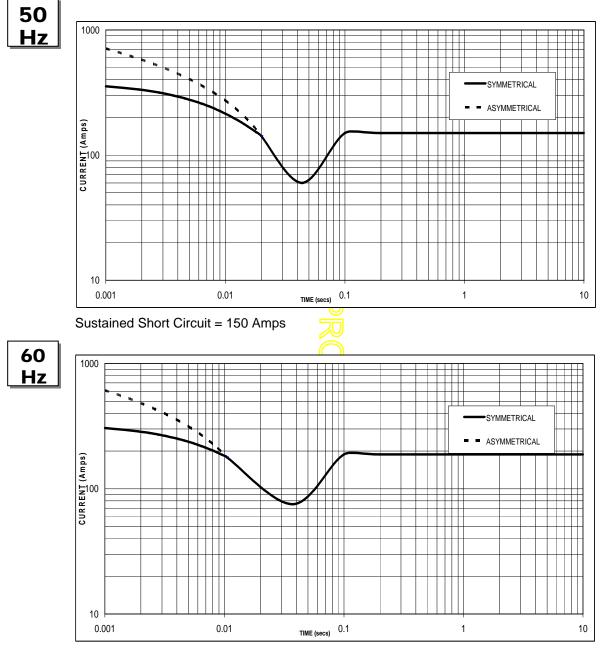
PI144G

Winding 311





Winding 311 AS480 AVR Without EBS Locked Rotor Motor Starting Curves



Winding 311 AS480 AVR With EBS fitted Locked Rotor Motor Starting Curves

WITH EBS FITTED Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 188 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz				
Voltage	Factor	Factor Voltage				
380v	X 1.00	416v	X 1.00			
400v	X 1.05	440v	X 1.06			
415v	X 1.09	460v	X 1.10			
440v	X 1.16	480v	X 1.15			
The sustains	d current val	ua is constan	t irrespective			

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

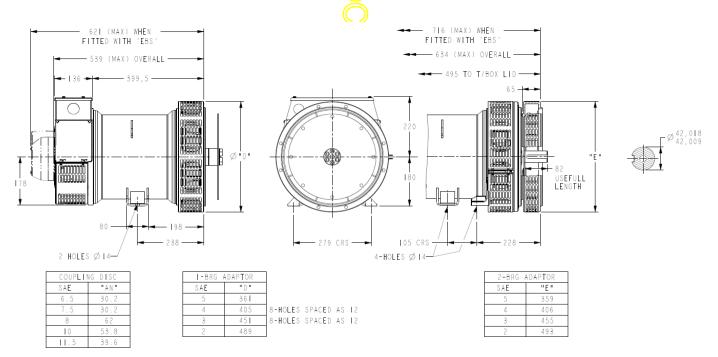
All other times are unchanged

Note 3 Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732

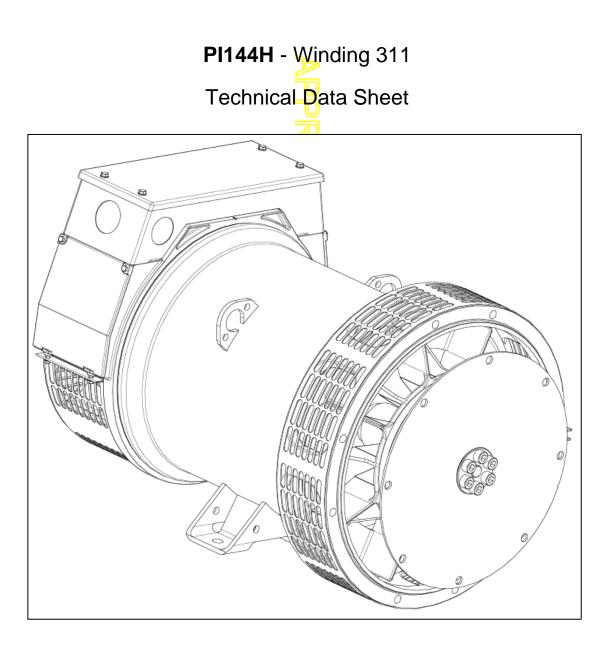
STAMFORD


PI144G

Winding 311 / 0.8 Power Factor

RATI	NGS
------	-----

	RATINGS .																
	Class - Temp Rise	C	ont. F -	105/40'	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	°°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	27.5	27.5	27.5	26.1	30.0	30.0	30.0	28.5	32.3	32.3	32.3	30.6	33.0	33.0	33.0	31.4
	kW	22.0	22.0	22.0	20.9	24.0	24.0	24.0	22.8	25.8	25.8	25.8	24.5	26.4	26.4	26.4	25.1
	Efficiency (%)	86.8	87.0	87.1	87.4	86.2	86.5	86.7	87.1	85.7	86.0	86.2	86.8	85.5	85.8	86.1	86.6
	kW Input	25.3	25.3	25.3	23.9	27.8	27.7	27.7	26.2	30.1	30.0	29.9	28.2	30.9	30.8	30.7	29.0
		-				-	7							-			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Devellet Ster () ()	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	30.3	32.3	33.3	34.4	33.0	35 <mark>.</mark> 3	36.4	37.5	35.5	37.9	39.1	40.3	36.3	38.8	40.0	41.3
	kW	24.2	25.8	26.6	27.5	26.4	28.2	29.1	30.0	28.4	30.3	31.3	32.2	29.0	31.0	32.0	33.0
	Efficiency (%)	87.1	87.1	87.2	87.2	86.7	86 <mark>.6</mark>	86.7	86.8	86.2	86.2	86.3	86.3	86.0	86.0	86.1	86.2
	kW Input	27.8	29.6	30.5	31.5	30.4	32.6	33.6	34.6	32.9	35.2	36.3	37.3	33.7	36.0	37.2	38.3
								J									



Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

PI144H SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on

other standards and certifications can be considered on request.

VOLTAGE REGULATOR

AS480 AVR fitted as STANDARD

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling. The AS480 will support limited accessories, RFI suppession remote voltage trimmer and for the P1 range only a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

The AVR is can be fitted to either side of the generator in its own housing in the non-drive end bracket.

Excitation Boost System (EBS) (OPTIONAL)

The EBS is a single, self-contained unit, attached to the non-drive end of the generator.

The EBS unit consists of the Excitation Boost Controller (EBC) and an Excitation Boost Generator (EBG). Under fault conditions, or when the generator is subjected to a large impact load such as a motor starting, the generator voltage will drop. The EBC senses the drop in voltage and engages the output power of the EBG. This additional power feeds the generator's excitation system, supporting the load until breaker discrimination can remove the fault or enable the generator to pick up a motor and drive the voltage recovery.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted at the non-drive end of the generator. Dedicated single phase generators are also available. A sheet steel terminal box contains provides ample space for the customers' wiring and gland arrangements. Alternative terminal boxes are available for customers who want to fit additional components in the terminal box.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION / IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 9 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

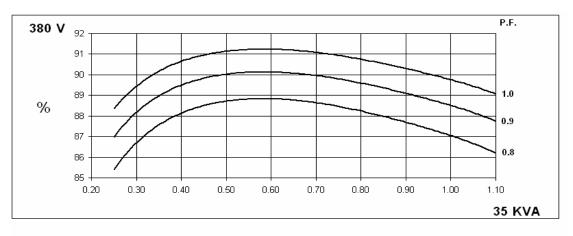
5% For reverse rotation

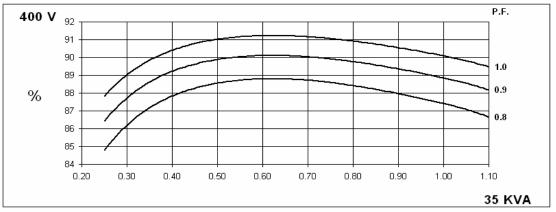
(Standard rotation CW when viewed from DE)

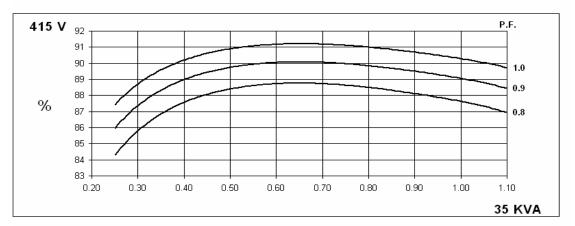
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

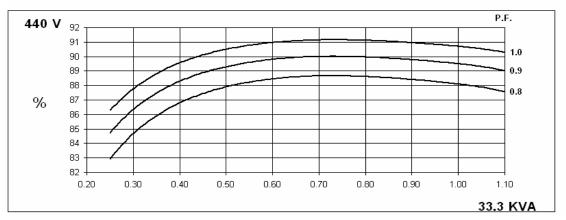
Front cover drawing typical of product range.

WINDING 311

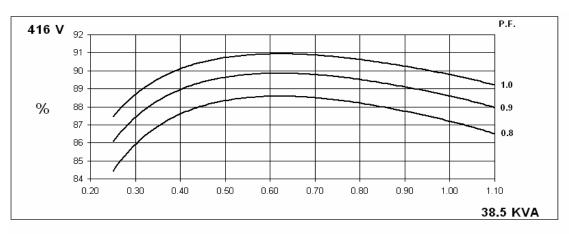

CONTROL SYSTEM	STANDARD) AS480 AV	R (SELF EXC	CITED)					
VOLTAGE REGULATION	± 1.0 %)					
SUSTAINED SHORT CIRCUIT		TED MACHI	NES DO NO	T SUSTAIN	A SHORT C		RRENT		
CONTROL SYSTEM	AS480 AVR		IONAL EXCI	TATION BO	OST SYSTE	M (FBS)			
SUSTAINED SHORT CIRCUIT						. ,			
SUSTAINED SHORT CIRCUIT	KEFEK IO	SHOKT CIP			RVE (page d)			
STATOR WINDING			DO	JBLE LAYEI	R CONCENT	RIC			
WINDING PITCH				TWO T	HIRDS				
WINDING LEADS				1	2				
STATOR WDG. RESISTANCE		0.179 O	hms PER PH	HASE AT 22	°C SERIES	STAR CON	NECTED		
ROTOR WDG. RESISTANCE				0.89 Ohm	s at 22°C				
EXCITER STATOR RESISTANCE				22.9 Ohm	s at 22°C				
EXCITER ROTOR RESISTANCE			0.21	Ohms PER	PHASE AT	22°C			
EBS STATOR RESISTANCE				12.9 Ohm	s at 22°C				
R.F.I. SUPPRESSION	BS EN	61000-6-2 &	BS EN 6100			0875N refe	r to factory f	or others	
WAVEFORM DISTORTION			1.5% NON-						
							-OAD < 3.07	U	
					Rev/Min				
BEARING DRIVE END			\frown		- 2RS. (ISO)				
BEARING NON-DRIVE END				BALL. 6306	- 2RS. (ISO)				
			ARING						
		EBS	WITHOU			EBS		JT EBS	
WEIGHT COMP. GENERATOR	172.5	•	170.8	-	175.5		173.8	-	
WEIGHT WOUND STATOR		kg	75	kg		kg	75	kg	
WEIGHT WOUND ROTOR	65.63	kg	63.93	kg	67.34	kg	65.64	kg	
WR ² INERTIA	0.2541	kgm ²	0.2524	kgm ²	0.2545	kgm ²	0.2528	kgm ²	
SHIPPING WEIGHTS in a crate	191	kg	189.3	kg	200 kg 198.3 kg				
PACKING CRATE SIZE		85 x 51 :	x 67 (cm)		85 x 51 x 67 (cm)				
		50	Hz_			60	Hz		
TELEPHONE INTERFERENCE		THF	<2%		TIF<50				
		0.135 m³/s	sec 286cfm		0.165 m³/sec 340 cfm				
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277	
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138	
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138	
KVA BASE RATING FOR REACTANCE	35	35	35	33.3	38.5	41.1	42.4	43.8	
VALUES Xd DIR. AXIS SYNCHRONOUS									
X'd DIR. AXIS STICHKONOUS X'd DIR. AXIS TRANSIENT	1.85 0.17	1.67 0.15	1.55 0.14	1.31 0.12	2.20 0.20	2.10 0.19	1.98 0.18	1.88 0.17	
X"d DIR. AXIS SUBTRANSIENT	0.17	0.13	0.14	0.09	0.15	0.13	0.10	0.17	
Xq QUAD. AXIS REACTANCE	0.89	0.80	0.74	0.63	1.05	1.00	0.95	0.90	
X"q QUAD. AXIS SUBTRANSIENT	0.19	0.17	0.16	0.13	0.23	0.22	0.21	0.20	
X∟LEAKAGE REACTANCE	0.07	0.06	0.06	0.05	0.08	0.08	0.07	0.07	
X2 NEGATIVE SEQUENCE	0.16	0.14	0.13	0.11	0.19	0.18	0.17	0.16	
X0ZERO SEQUENCE	0.08	0.07		0.06				0.08	
REACTANCES ARE SATURAT		VA	LUES ARE		26 s			ED	
T'd TRANSIENT TIME CONST. T"d SUB-TRANSTIME CONST.					26 S 07 S				
T'do O.C. FIELD TIME CONST.					6 s				
Ta ARMATURE TIME CONST.					07 s				
SHORT CIRCUIT RATIO					Xd				
				17.	~				

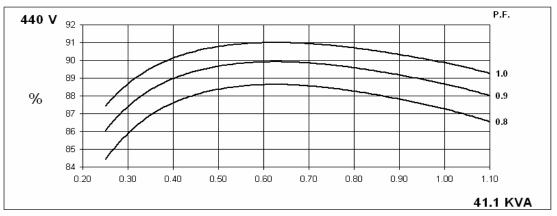


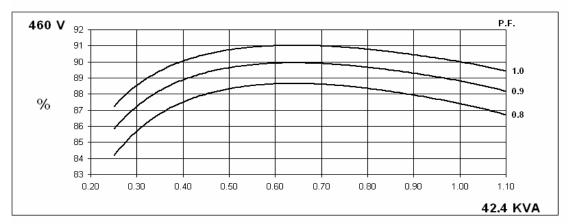

PI144H

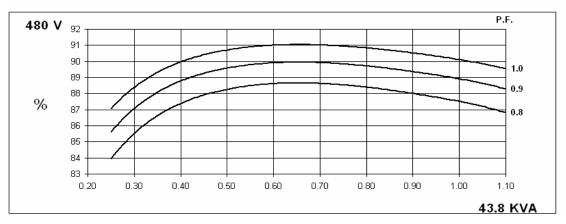


Winding 311

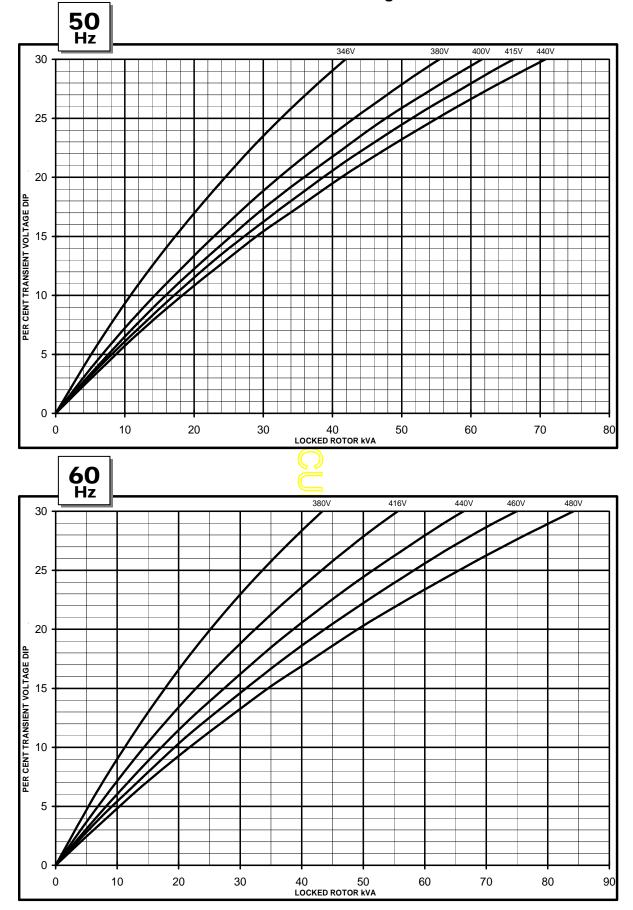


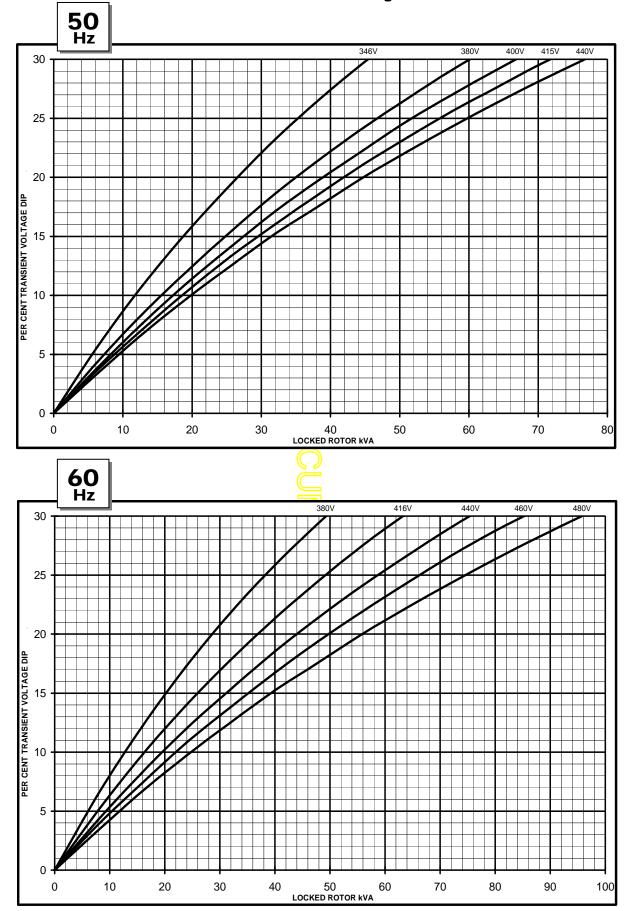




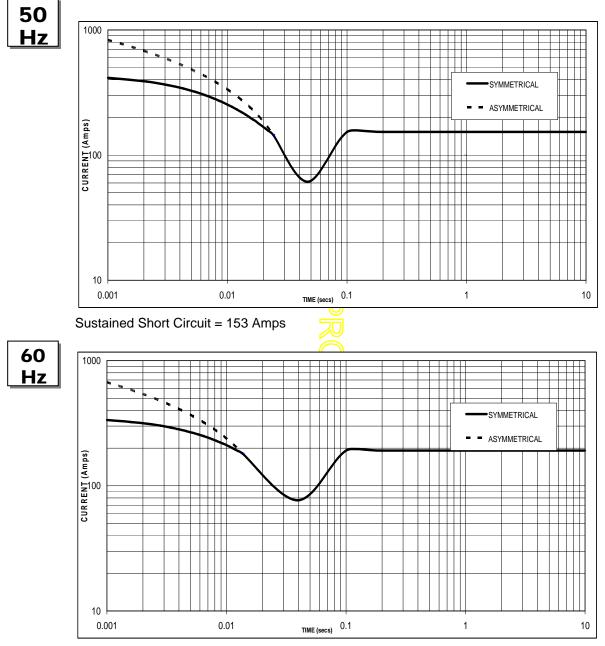

PI144H

Winding 311





Winding 311 AS480 AVR Without EBS Locked Rotor Motor Starting Curves



Winding 311 AS480 AVR With EBS fitted Locked Rotor Motor Starting Curves

WITH EBS FITTED Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 191 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60	Hz		
Voltage	Factor	Voltage	Factor		
380v	X 1.00	416v	X 1.00		
400v	X 1.05	440v	X 1.06		
415v	X 1.09	460v	X 1.10		
440v	X 1.16	480v	X 1.15		
The sustaine	d current val	ua is constan	t irrespective		

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

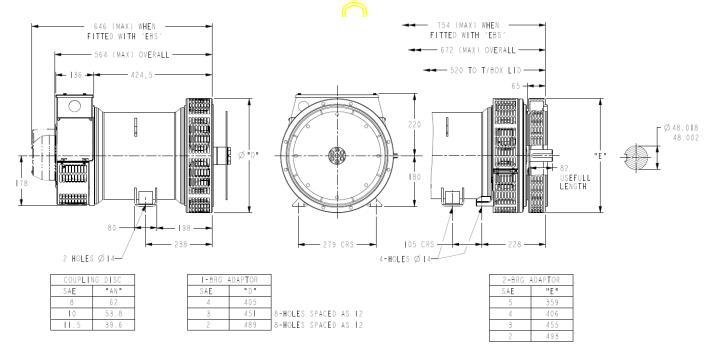
All other times are unchanged

Note 3 Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732

STAMFORD

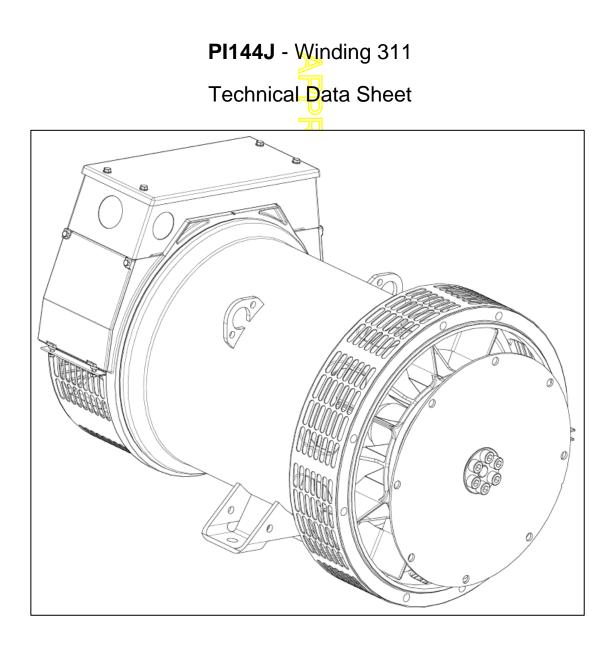

PI144H

Winding 311 / 0.8 Power Factor

RATI	NGS
------	-----

	RATINGO																
	Class - Temp Rise	C	ont. F -	105/40'	Ő	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	Sta	andby -	163/27	°°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	32.0	32.0	32.0	30.4	35.0	35.0	35.0	33.3	37.5	37.5	37.5	35.6	38.5	38.5	38.5	36.6
	kW	25.6	25.6	25.6	24.3	28.0	28.0	28.0	26.6	30.0	30.0	30.0	28.5	30.8	30.8	30.8	29.3
	Efficiency (%)	87.7	87.9	88.0	88.2	87.1	87.4	87.6	87.9	86.6	87.0	87.2	87.7	86.4	86.8	87.0	87.5
	kW Input	29.2	29.1	29.1	27.6	32.1	32.0	32.0	30.3	34.6	34.5	34.4	32.5	35.6	35.5	35.4	33.5
							7										
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	35.2	37.6	38.8	40.0	38.5	41.1	42.4	43.8	41.3	44.1	45.5	46.9	42.4	45.2	46.7	48.1
	kW	28.2	30.1	31.0	32.0	30.8	32.9	33.9	35.0	33.0	35.3	36.4	37.5	33.9	36.2	37.4	38.5
	Efficiency (%)	88.0	88.0	88.1	88.1	87.5	87.5	87.6	87.7	87.1	87.1	87.2	87.3	86.9	86.9	87.0	87.1
	kW Input	32.0	34.2	35.2	36.3	35.2	37.6	38.7	39.9	37.9	40.5	41.7	43.0	39.0	41.7	43.0	44.2
]									

DIMENSIONS



Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on

other standards and certifications can be considered on request.

VOLTAGE REGULATOR

AS480 AVR fitted as STANDARD

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling. The AS480 will support limited accessories, RFI suppession remote voltage trimmer and for the P1 range only a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

The AVR is can be fitted to either side of the generator in its own housing in the non-drive end bracket.

Excitation Boost System (EBS) (OPTIONAL)

The EBS is a single, self-contained unit, attached to the non-drive end of the generator.

The EBS unit consists of the Excitation Boost Controller (EBC) and an Excitation Boost Generator (EBG). Under fault conditions, or when the generator is subjected to a large impact load such as a motor starting, the generator voltage will drop. The EBC senses the drop in voltage and engages the output power of the EBG. This additional power feeds the generator's excitation system, supporting the load until breaker discrimination can remove the fault or enable the generator to pick up a motor and drive the voltage recovery.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted at the non-drive end of the generator. Dedicated single phase generators are also available. A sheet steel terminal box contains provides ample space for the customers' wiring and gland arrangements. Alternative terminal boxes are available for customers who want to fit additional components in the terminal box.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION / IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 9 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

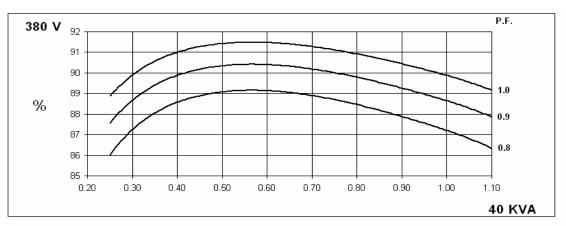
5% For reverse rotation

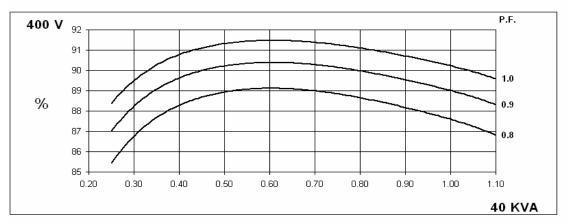
(Standard rotation CW when viewed from DE)

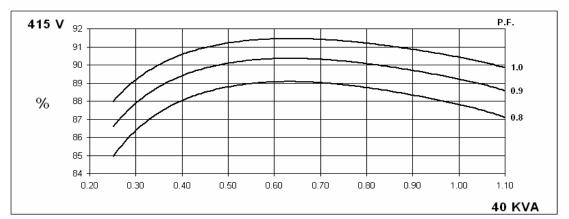
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

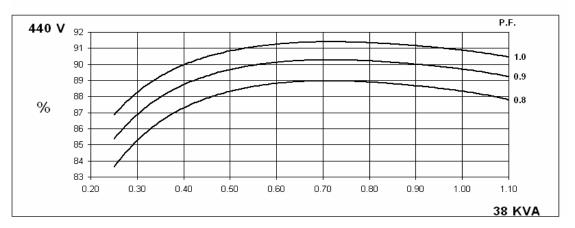
Front cover drawing typical of product range.

WINDING 311

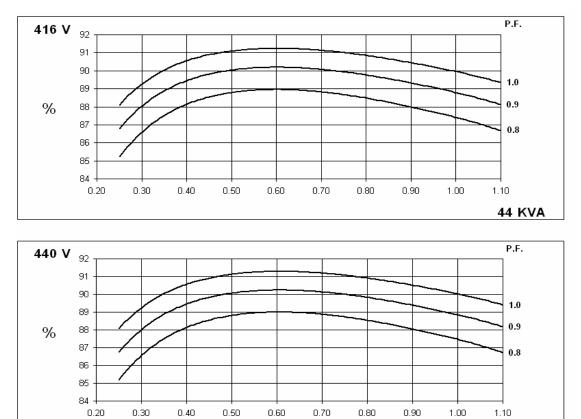

CONTROL SYSTEM	STANDARD) AS480 AV	R (SELF EX							
VOLTAGE REGULATION	STANDARD AS480 AVR (SELF EXCITED) ± 1.0 %									
SUSTAINED SHORT CIRCUIT	SELF EXCITED MACHINES DO NOT SUSTAIN A SHORT CIRCUIT CURRENT									
CONTROL SYSTEM	AS480 AVR WITH OPTIONAL EXCITATION BOOST SYSTEM (EBS)									
SUSTAINED SHORT CIRCUIT	REFER TO SHORT CIRCUIT DECREMENT CURVE (page 8)									
STATOR WINDING			DOI	JBLE LAYEI	R CONCENT	RIC				
WINDING PITCH	TWO THIRDS									
WINDING LEADS	12									
STATOR WDG. RESISTANCE	0.154 Ohms PER PHASE AT 22°C SERIES STAR CONNECTED									
ROTOR WDG. RESISTANCE	0.99 Ohms at 22°C									
EXCITER STATOR RESISTANCE	22.9 Ohms at 22 °C									
EXCITER ROTOR RESISTANCE			0.21	Ohms PER	PHASE AT	22°C				
EBS STATOR RESISTANCE				12.9 Ohm	-					
R.F.I. SUPPRESSION	BS EN	61000-6-2 &	BS EN 6100			0875N rofo	r to factory f	or others		
			1.5% NON-							
		NU LUAD <	NON-				-UND < 3.0%	υ		
					Rev/Min					
BEARING DRIVE END	BALL. 6310 - 2RS. (ISO)									
BEARING NON-DRIVE END	BALL. 6306 - 2RS. (ISO)									
	14/1711		ARING					IT 550		
		EBS	WITHOU			EBS		JT EBS		
WEIGHT COMP. GENERATOR	184		182.3	-	187 kg 185.3 kg					
WEIGHT WOUND STATOR		kg		kg	84 kg 84 kg					
WEIGHT WOUND ROTOR	70.97	kg	69.27	kg	72.68	kg	70.98	kg		
WR ² INERTIA	0.2758	kgm ²	0.2741	kgm ²	0.2763 kgm ² 0.2746 kgm ²					
SHIPPING WEIGHTS in a crate	202	kg	200.3	kg	211 kg 209.3 kg					
PACKING CRATE SIZE		85 x 51	x 67 (cm)			85 x 51 :	x 67 (cm)			
		50	Hz			60	Hz			
TELEPHONE INTERFERENCE		THF	<2%			TIF	<50			
COOLING AIR		0.135 m³/s	s <mark>ec 28</mark> 6cfm		0.165 m³/sec 340 cfm					
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277		
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138		
VOLTAGE SERIES DELTA	220/110	230/115	24 0 /120	254/127	240/120	254/127	266/133	277/138		
KVA BASE RATING FOR REACTANCE	40	40	40	38	44	47	48.5	50		
Xd DIR. AXIS SYNCHRONOUS	1.92	1.73	1.61	1.36	2.27	2.17	2.05	1.94		
X'd DIR. AXIS TRANSIENT	0.18	0.16	0.15	0.13	0.21	0.20	0.19	0.18		
X"d DIR. AXIS SUBTRANSIENT	0.13	0.12	0.11	0.09	0.15	0.14	0.14	0.13		
Xq QUAD. AXIS REACTANCE	0.92	0.83	0.77	0.65	1.09	1.04	0.98	0.93		
X"q QUAD. AXIS SUBTRANSIENT	0.20	0.18	0.17	0.14	0.24	0.23	0.22	0.20		
	0.08	0.07	0.07	0.05	0.09	0.09	0.08	0.08		
X2 NEGATIVE SEQUENCE X0 ZERO SEQUENCE	0.17	0.15	0.14 0.07	0.12	0.20	0.19	0.18	0.17		
REACTANCES ARE SATURAT			ALUES ARE							
T'd TRANSIENT TIME CONST.		.,			29 s					
T"d SUB-TRANSTIME CONST.				0.0	07 s					
T'do O.C. FIELD TIME CONST.	0.66 s									
Ta ARMATURE TIME CONST.	0.007 s									
SHORT CIRCUIT RATIO	HORT CIRCUIT RATIO 1/Xd									

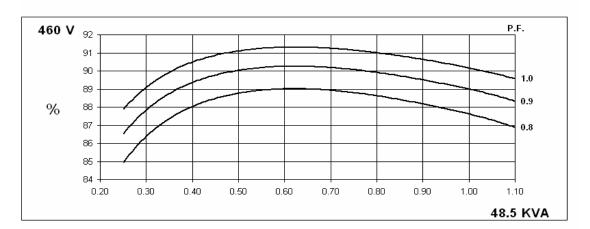


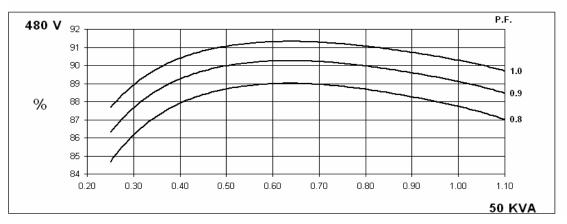



PI144J

Winding 311

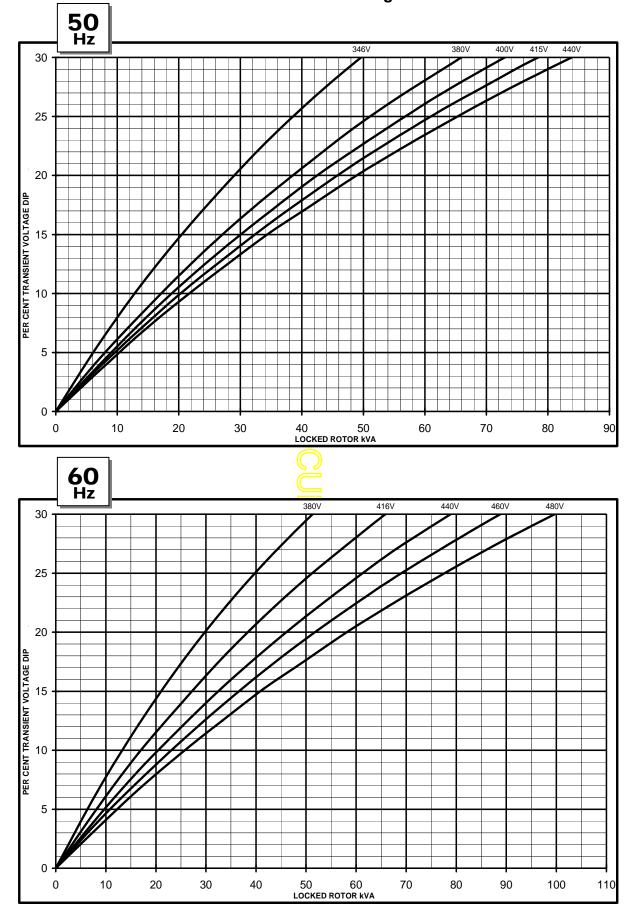


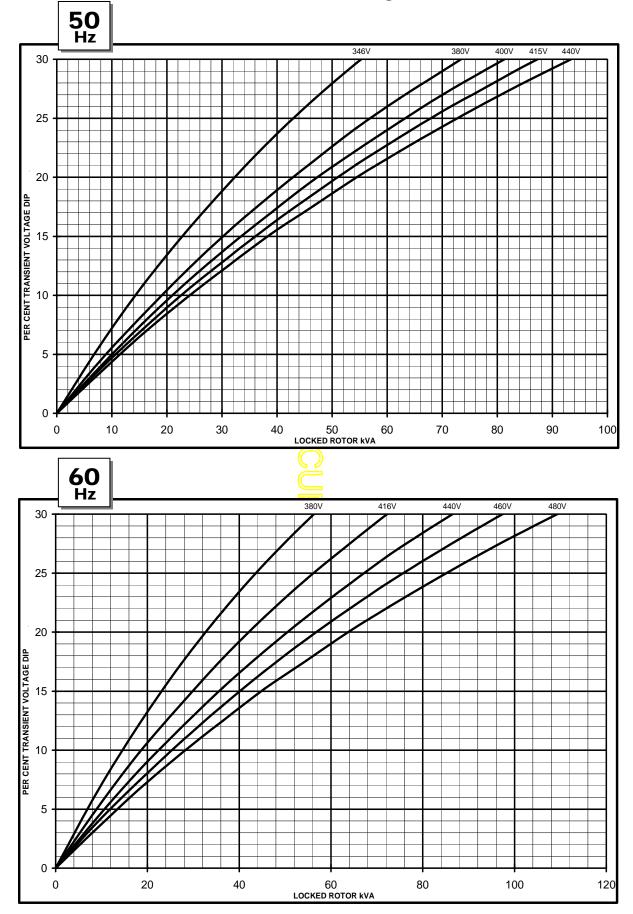

47 KVA



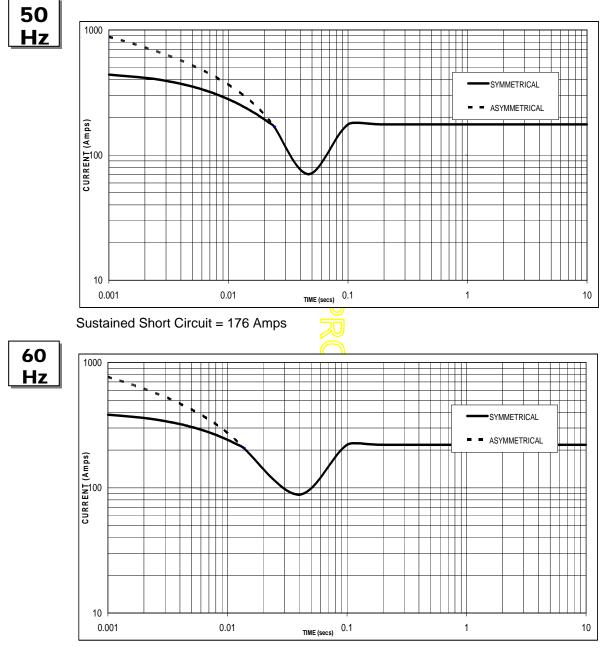
PI144J

Winding 311





Winding 311 AS480 AVR Without EBS Locked Rotor Motor Starting Curves



Winding 311 AS480 AVR With EBS fitted Locked Rotor Motor Starting Curves

WITH EBS FITTED Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 220 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz						
Voltage	Factor	Voltage	Factor					
380v	X 1.00	416v	X 1.00					
400v	X 1.05	440v	X 1.06					
415v	X 1.09	460v	X 1.10					
440v	X 1.16	480v	X 1.15					
The sustained current value is constant irrespective								

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

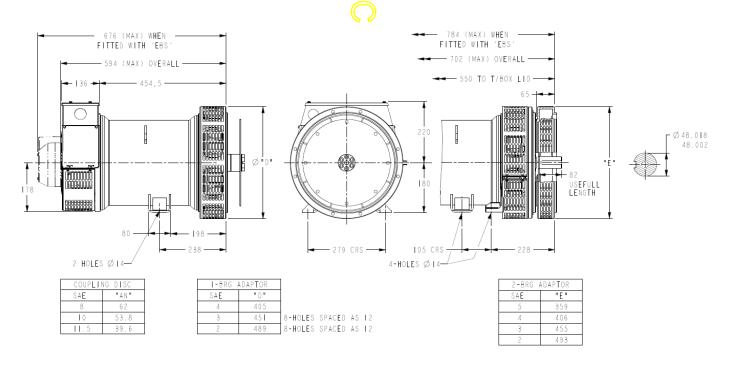
All other times are unchanged

Note 3 Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732

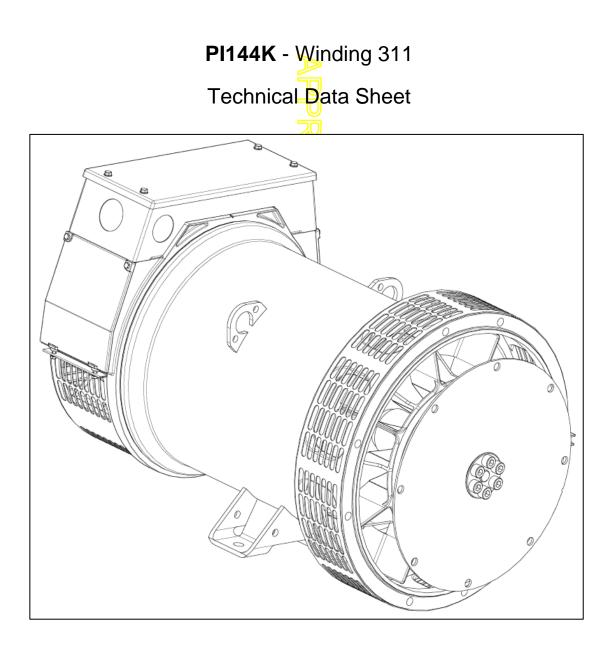
STAMFORD


PI144J

Winding 311 / 0.8 Power Factor

	RATINGS																
	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	Sta	andby -	163/27	°°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
Hz	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	36.5	36.5	36.5	34.7	40.0	40.0	40.0	38.0	44.0	44.0	44.0	41.8	45.0	45.0	45.0	42.8
	kW	29.2	29.2	29.2	27.8	32.0	32.0	32.0	30.4	35.2	35.2	35.2	33.4	36.0	36.0	36.0	34.2
	Efficiency (%)	87.9	88.1	88.2	88.5	87.3	87.6	87.8	88.2	86.5	86.9	87.1	87.7	86.3	86.7	87.0	87.6
	kW Input	33.2	33.1	33.1	31.4	36.7	36.5	36.4	34.5	40.7	40.5	40.4	38.1	41.7	41.5	41.4	39.0
							6			-							
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
112	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	40.2	42.9	44.3	45.6	44.0	47.0	48.5	50.0	48.4	51.7	53.4	55.0	49.5	52.9	54.6	56.3
	kW	32.2	34.3	35.4	36.5	35.2	37.6	38.8	40.0	38.7	41.4	42.7	44.0	39.6	42.3	43.7	45.0
	Efficiency (%)	88.2	88.2	88.3	88.4	87.7	87 <mark>.7</mark>	87.8	87.9	87.1	87.1	87.2	87.3	86.9	86.9	87.0	87.1
	kW Input	36.5	38.9	40.1	41.3	40.1	42.9	9 44.2	45.5	44.4	47.5	49.0	50.4	45.6	48.7	50.2	51.7

RATINGS



Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

PI144K SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on

request.

VOLTAGE REGULATOR

AS480 AVR fitted as STANDARD

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling. The AS480 will support limited accessories, RFI suppession remote voltage trimmer and for the P1 range only a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

The AVR is can be fitted to either side of the generator in its own housing in the non-drive end bracket.

Excitation Boost System (EBS) (OPTIONAL)

The EBS is a single, self-contained unit, attached to the non-drive end of the generator.

The EBS unit consists of the Excitation Boost Controller (EBC) and an Excitation Boost Generator (EBG). Under fault conditions, or when the generator is subjected to a large impact load such as a motor starting, the generator voltage will drop. The EBC senses the drop in voltage and engages the output power of the EBG. This additional power feeds the generator's excitation system, supporting the load until breaker discrimination can remove the fault or enable the generator to pick up a motor and drive the voltage recovery.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted at the non-drive end of the generator. Dedicated single phase generators are also available. A sheet steel terminal box contains provides ample space for the customers' wiring and gland arrangements. Alternative terminal boxes are available for customers who want to fit additional components in the terminal box.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION / IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 9 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

5% For reverse rotation

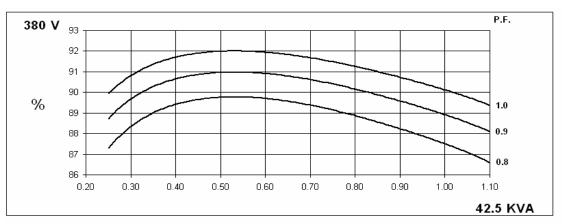
(Standard rotation CW when viewed from DE)

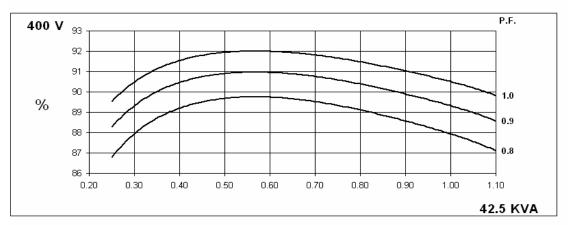
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

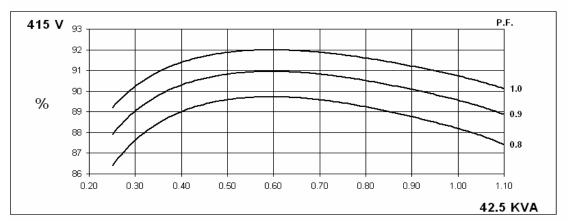
Front cover drawing typical of product range.

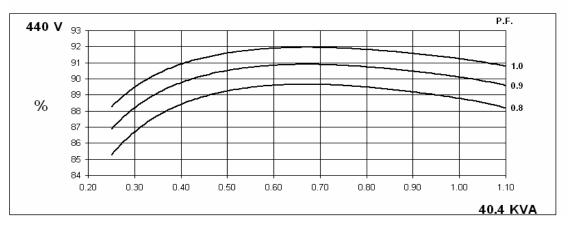
WINDING 311

CONTROL SYSTEM	STANDARD) AS480 AV	R (SELF EXC							
VOLTAGE REGULATION	± 1.0 %		(-	,						
SUSTAINED SHORT CIRCUIT		TED MACHI	NES DO NO	T SUSTAIN	A SHORT C		RRENT			
CONTROL SYSTEM	AS480 AVR	WITH OPT	IONAL EXCI	TATION BO	OST SYSTE	M (EBS)				
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIF		EMENT CU	RVE (page 8	3)				
STATOR WINDING			DOI	JBLE LAYEI	R CONCENT	RIC				
WINDING PITCH				TWO T	HIRDS					
WINDING LEADS				1	2					
STATOR WDG. RESISTANCE		0.153 O	hms PER PH	ASE AT 22	°C SERIES	STAR CONI	NECTED			
ROTOR WDG. RESISTANCE		0.983 Ohms at 22°C								
EXCITER STATOR RESISTANCE				22.9 Ohm	s at 22°C					
EXCITER ROTOR RESISTANCE			0.21		PHASE AT	22°C				
EBS STATOR RESISTANCE			0.21	12.9 Ohm	-	22 0				
		C4000 C 0 8				007511				
R.F.I. SUPPRESSION			BS EN 6100							
WAVEFORM DISTORTION		NU LOAD <	1.5% NON-			U LINEAR L	_UAD < 5.0%	0		
MAXIMUM OVERSPEED				2250 F	Rev/Min					
BEARING DRIVE END				BALL. 6310	- 2RS. (ISO)					
BEARING NON-DRIVE END			Q	BALL. 6306	- 2RS. (ISO))				
		1 BE/	ARING		2 BEARING					
	WITH	EBS		JT EBS	WITH	EBS	WITHOUT EBS			
WEIGHT COMP. GENERATOR	193	kg	191.3	kg	196	kg	194.3	kg		
WEIGHT WOUND STATOR	94	kg	94	kg	94	kg	94	kg		
WEIGHT WOUND ROTOR	73.55	kg	71.85	kg	75.26	kg	73.56	kg		
WR ² INERTIA	0.2866	kgm ²	0.2849	kgm ²	0.2871	kgm ²	0.2854	0.2854 kgm ²		
SHIPPING WEIGHTS in a crate	211	kg	209.3	kg	220	kg	218.3	kg		
PACKING CRATE SIZE		x 67 (cm)	•							
	85 x 51 x 67 (cm) 85 x 51 x 67 (cm) 50 Hz 60 Hz									
TELEPHONE INTERFERENCE			<2%				<50			
COOLING AIR			sec 286cfm				ec 340 cfm			
				440/054			1	100/077		
	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277		
	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138		
VOLTAGE SERIES DELTA	220/110	230/115	24 <mark>0</mark> /120	254/127	240/120	254/127	266/133	277/138		
kVA BASE RATING FOR REACTANCE	42.5	42.5	42.5	40.4	50	52.5	52.5	55		
Xd DIR. AXIS SYNCHRONOUS	1.98	1.79	1.66	1.41	2.51	2.36	2.16	2.07		
X'd DIR. AXIS TRANSIENT	0.19	0.17	0.16	0.13	0.24	0.23	0.21	0.20		
X"d DIR. AXIS SUBTRANSIENT	0.13	0.12	0.11	0.09	0.17	0.16	0.15	0.14		
Xq QUAD. AXIS REACTANCE	0.95	0.86	0.80	0.68	1.21	1.14	1.04	1.00		
X"q QUAD. AXIS SUBTRANSIENT	0.21	0.19	0.18	0.15	0.27	0.25	0.23	0.22		
XL LEAKAGE REACTANCE X2 NEGATIVE SEQUENCE	0.08	0.07	0.07	0.05 0.13	0.10	0.09	0.09	0.08		
X0ZERO SEQUENCE	0.18	0.10	0.13	0.13	0.22	0.21	0.19	0.18		
REACTANCES ARE SATURAT			LUES ARE							
T'd TRANSIENT TIME CONST.					03 s					
T"d SUB-TRANSTIME CONST.				0.0	07 s					
T'do O.C. FIELD TIME CONST.				0.6	68 s					
Ta ARMATURE TIME CONST.				0.0	07 s					
SHORT CIRCUIT RATIO				1/	Xd					

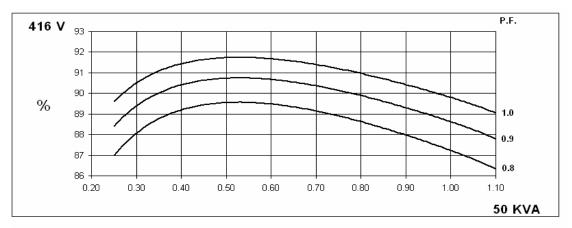


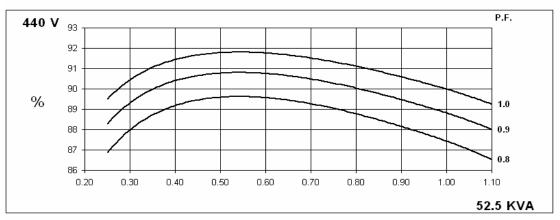


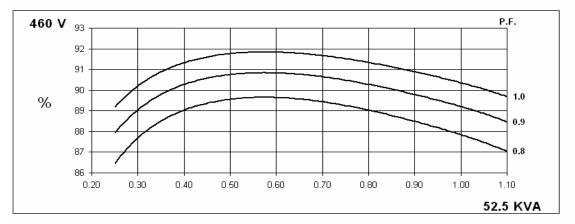

PI144K

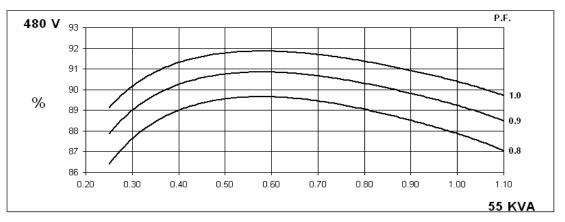

Winding 311

THREE PHASE EFFICIENCY CURVES

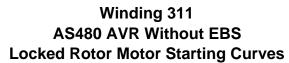


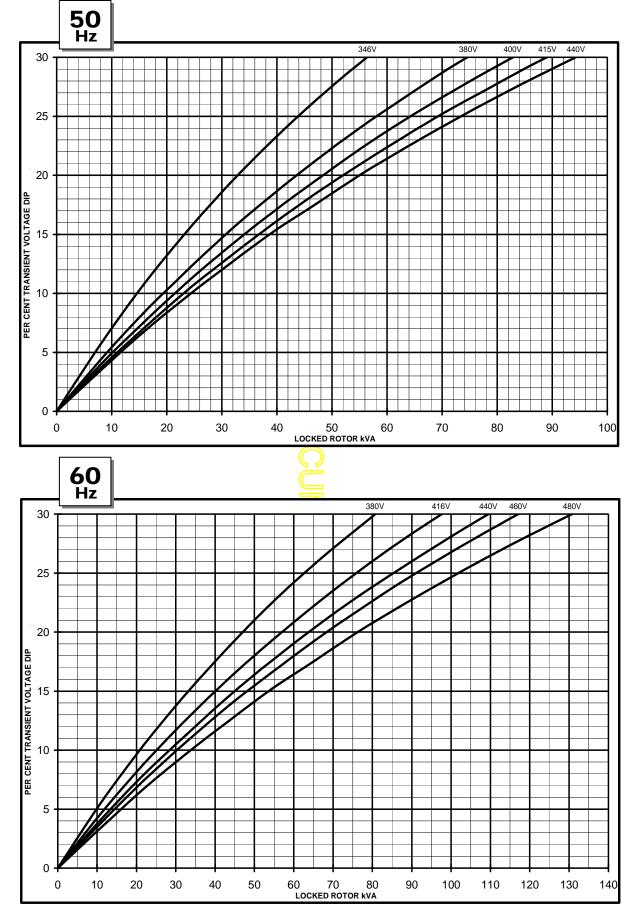

PI144K

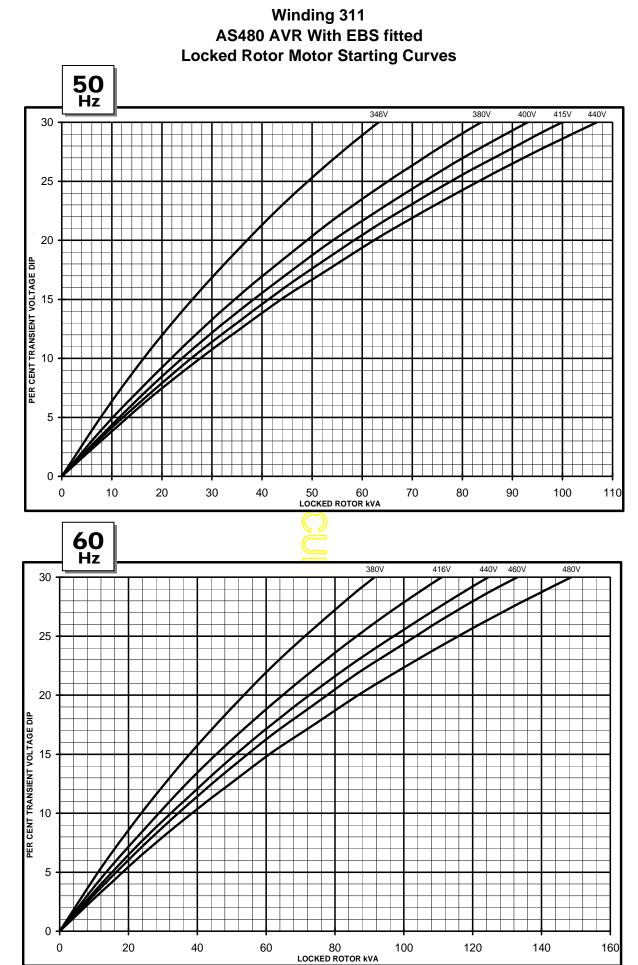



Winding 311

THREE PHASE EFFICIENCY CURVES









WITH EBS FITTED Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 236 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	X 1.00	416v	X 1.00			
400v	X 1.05	440v	X 1.06			
415v	X 1.09	460v	X 1.10			
440v	X 1.16	480v	X 1.15			
The sustaine	d current val	ua is constan	t irrespective			

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

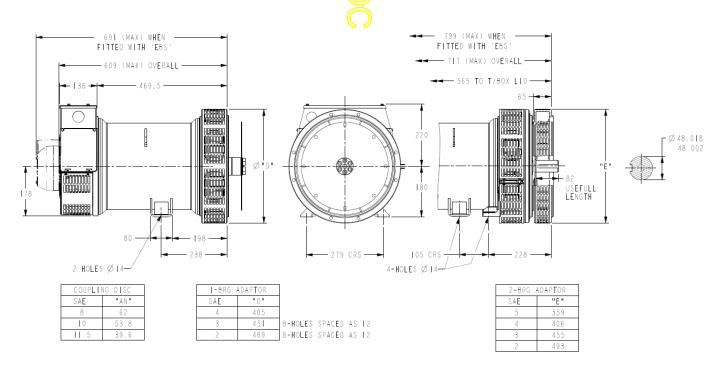
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3 Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732

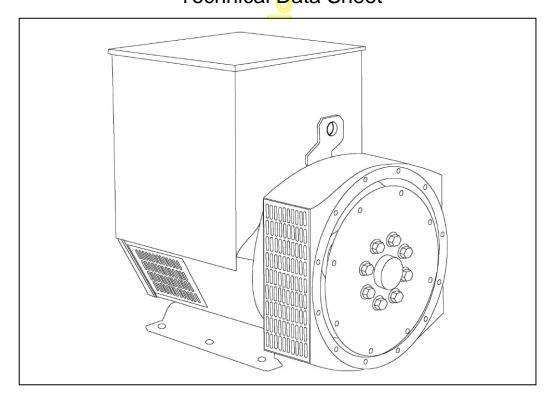

STAMFORD

PI144K

Winding 311 / 0.8 Power Factor

	Class - Temp Rise	C	Cont. F - 105/40°C				Cont. H - 125/40°C			Standby - 150/40°C				Standby - 163/27°C			
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	37.5	37.5	37.5	35.6	42.5	42.5	42.5	40.4	45.0	45.0	45.0	42.8	46.8	46.8	46.8	44.5
	kW	30.0	30.0	30.0	28.5	34.0	34.0	34.0	32.3	36.0	36.0	36.0	34.2	37.4	37.4	37.4	35.6
	Efficiency (%)	88.4	88.7	88.8	89.3	87.6	87.9	88.1	88.8	87.1	87.5	87.7	88.5	86.8	87.2	87.4	88.2
	kW Input	33.9	33.8	33.8	31.9	38.8	38.7	38.6	36.4	41.3	41.1	41.0	38.7	43.1	42.9	42.8	40.3
						-	7			-				-			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	45.0	46.3	46.3	48.0	50.0	52 <mark>.5</mark>	52.5	55.0	53.1	55.0	55.0	58.1	55.0	56.3	56.3	60.0
	kW	36.0	37.0	37.0	38.4	40.0	42.0	42.0	44.0	42.5	44.0	44.0	46.5	44.0	45.0	45.0	48.0
	Efficiency (%)	88.3	88.5	88.8	88.8	87.6	87 <mark>.</mark> 7	88.1	88.0	87.1	87.4	87.7	87.6	86.8	87.2	87.6	87.4
	kW Input	40.8	41.8	41.7	43.2	45.7	47.9	47.7	50.0	48.8	50.3	50.2	53.1	50.7	51.6	51.4	54.9
								J									

DIMENSIONS


Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

UCI224C - Winding 311 Technica

UCI224C SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the definition main rotor, through a full wave bridge, protected by a surger suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This deexcites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

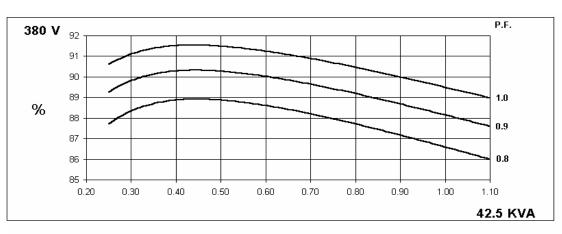
Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

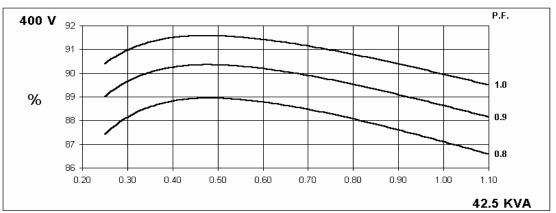
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

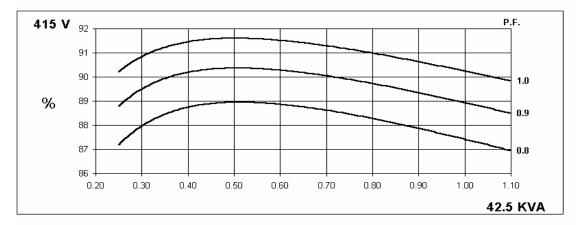
Front cover drawing typical of product range.

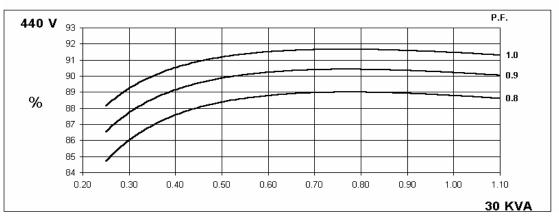
WINDING 311

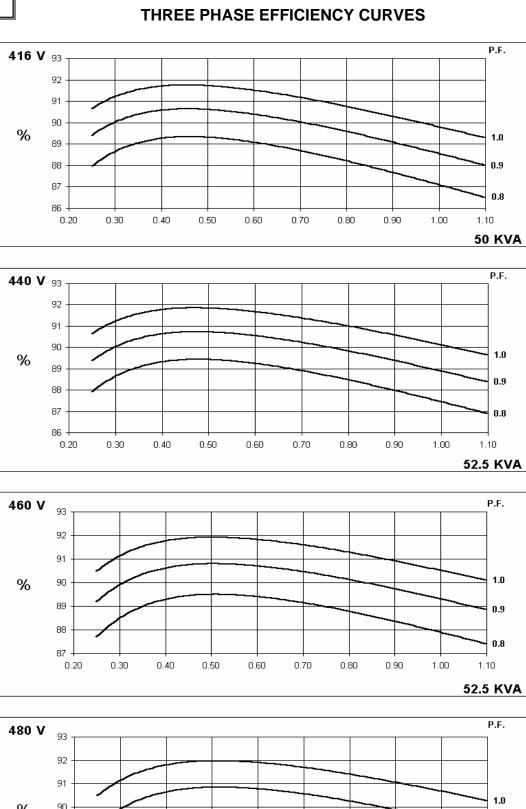
		WIN	IDING 31	1							
CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.								
A.V.R.	MX321	MX341									
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	GINE GOVE	RNING						
SUSTAINED SHORT CIRCUIT			CUIT DECRE		-						
	INET EIX TO										
CONTROL SYSTEM	SELF EXCIT	ED									
A.V.R.	SX460	AS440									
VOLTAGE REGULATION	± 1.0 %	± 1.0 % ± 1.0 % With 4% ENGINE GOVERNING									
SUSTAINED SHORT CIRCUIT	SERIES 4 C	ONTROL DO	DES NOT SU	STAIN A SH	ORT CIRCUI	T CURRENT	-				
INSULATION SYSTEM				CLAS	S H						
PROTECTION				IP2	23						
RATED POWER FACTOR				0.	8						
	TATOR WINDING DOUBLE LAYER CONCENTRIC										
			DOC	-							
	TWO THIRDS										
WINDING LEADS				12							
STATOR WDG. RESISTANCE	ATOR WDG. RESISTANCE 0.181 Ohms PER PHASE AT 22°C SERIES STAR CONNECTED										
ROTOR WDG. RESISTANCE				0.59 Ohms							
EXCITER STATOR RESISTANCE				21 Ohms	at 22°C						
EXCITER ROTOR RESISTANCE			0.071	Ohms PER	PHASE AT 2	22°C					
R.F.I. SUPPRESSION	BS EN	61000-6-2 8	BS EN 6100	0-6-4,VDE 0	875G, VDE (875N. refer t	o factory for	others			
WAVEFORM DISTORTION	NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0%										
MAXIMUM OVERSPEED			\leq	2250 R	ev/Min						
BEARING DRIVE END			m	BALL. 6312-	2RS (ISO)						
BEARING NON-DRIVE END	BALL. 6309-2RS (ISO)										
		1 BE/				2 BEA	RING				
WEIGHT COMP. GENERATOR						280					
WEIGHT WOUND STATOR			kg			75	-				
WEIGHT WOUND ROTOR		78.9	95 kg			70.58	8 kg				
WR ² INERTIA		0.398	7 kgm ²			0.3667	′ kgm²				
SHIPPING WEIGHTS in a crate		294	4 <mark>kg</mark>			301	kg				
PACKING CRATE SIZE			x <mark>96(c</mark> m)			97 x 57 x	(96(cm)				
			HZ			60					
			[:] < <mark>2%</mark>			TIF					
	000/000	1	ec 458 cfm	110/051	44.0/04.0	0.281 m ³ /se	1	400/077			
VOLTAGE SERIES STAR VOLTAGE PARALLEL STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277			
VOLTAGE PARALLEL STAR	190/110 220/110	200/115 230/115	20 <mark>8</mark> /120 240/120	220/127 254/127	208/120 240/120	220/127 254/127	230/133 266/133	240/138 277/138			
kVA BASE RATING FOR REACTANCE											
VALUES	42.5	42.5	42.5	30	50	52.5	52.5	55			
Xd DIR. AXIS SYNCHRONOUS	2.42	2.19	2.03	1.27	3.03	2.84	2.60	2.50			
X'd DIR. AXIS TRANSIENT	0.19	0.17	0.16	0.10	0.22	0.21	0.19	0.18			
X"d DIR. AXIS SUBTRANSIENT	0.12	0.11	0.10	0.06	0.15	0.14	0.13	0.12			
Xq QUAD. AXIS REACTANCE	1.12	1.01	0.94	0.59	1.40	1.31	1.20	1.16			
X"q QUAD. AXIS SUBTRANSIENT	0.16	0.14	0.13	0.08	0.14	0.13	0.12	0.12			
	0.08	0.08	0.07	0.04	0.10	0.09	0.09	0.08			
X2 NEGATIVE SEQUENCE	0.14	0.13	0.12	0.08	0.14	0.13	0.12	0.12			
X0ZERO SEQUENCE	0.10	0.09		0.05				0.08			
REACTANCES ARE SATURAT					I KATING AL	ND VOLTAG		U			
	red I	V			5.5						
T'd TRANSIENT TIME CONST.		V		0.02							
		V		0.02	6 s						
T'd TRANSIENT TIME CONST. T"d SUB-TRANSTIME CONST.		V		0.02	6 s 5 s						

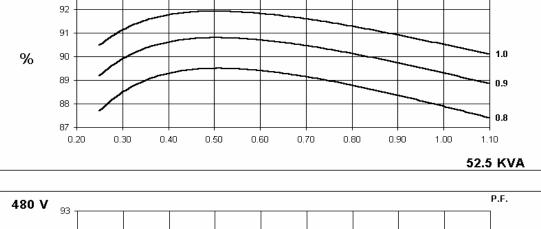


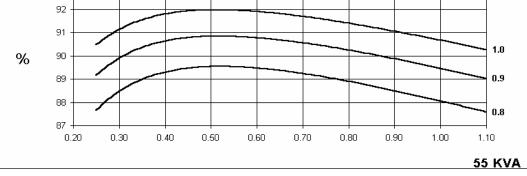



50


Hz

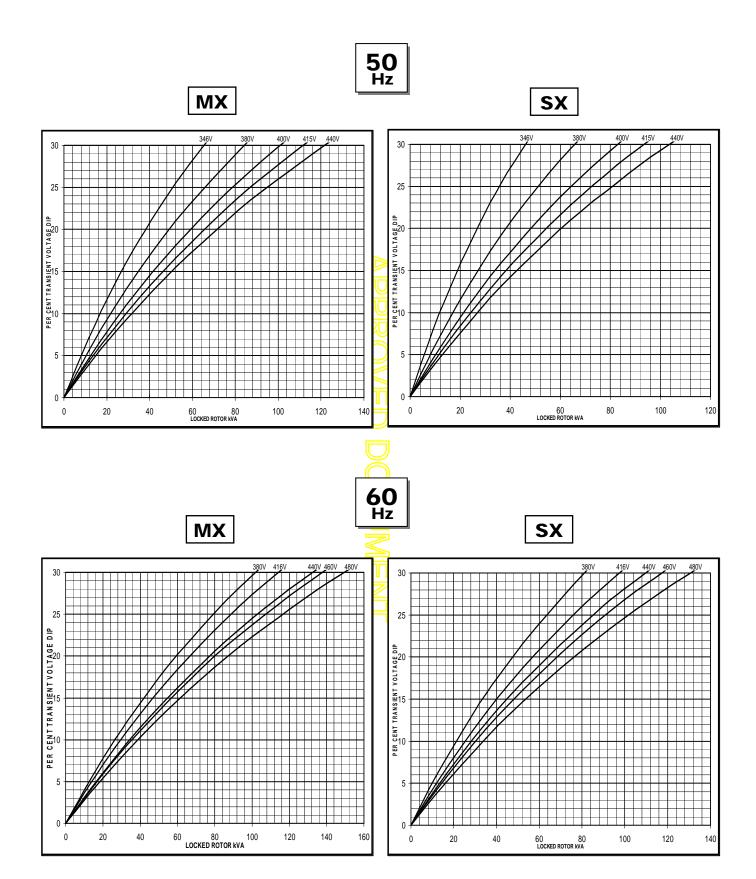

THREE PHASE EFFICIENCY CURVES

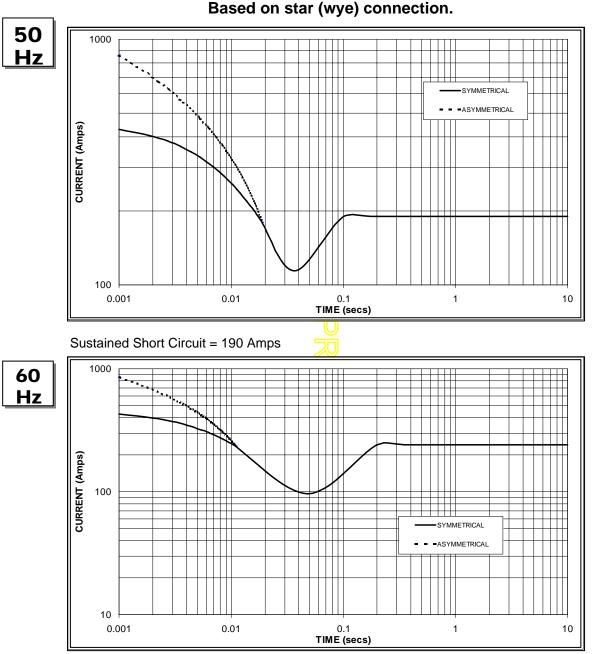



Winding 311

60

Hz


STAMFORD



Winding 311

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 240 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz					
Voltage	Factor	Voltage	Factor				
380v	X 1.00	416v	X 1.00				
400v	X 1.07	440v	X 1.06				
415v	X 1.12	460v	X 1.12				
440v	X 1.18	480v	X 1.17				
The sustains	d current val	ua is constan	t irrespective				

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

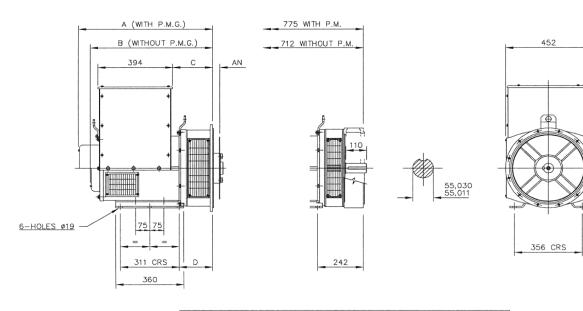
All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732

690


225

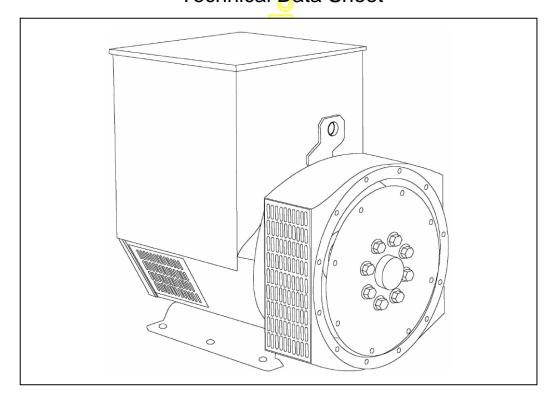
Winding 311 / 0.8 Power Factor

RATI	NGS
------	-----

	Class - Temp Rise	Class - Temp Rise Cont. F - 105/40°C					Cont. H - 125/40°C				Standby - 150/40°C				Standby - 163/27°C			
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440	
	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220	
1 12	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254	
	kVA	37.5	37.5	37.5	27.0	42.5	42.5	42.5	30.0	45.0	45.0	45.0	31.7	46.8	46.8	46.8	33.0	
	kW	30.0	30.0	30.0	21.6	34.0	34.0	34.0	24.0	36.0	36.0	36.0	25.4	37.4	37.4	37.4	26.4	
	Efficiency (%)	87.3	87.7	88.0	88.9	86.6	87.1	87.4	88.8	86.2	86.8	87.1	88.7	86.0	86.6	86.9	88.6	
	kW Input	34.4	34.2	34.1	24.3	39.3	39.0	38.9	27.0	41.8	41.5	41.3	28.6	43.5	43.2	43.1	29.8	
							7			-				_				
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480	
Hz	Derellel Ster (\/)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240	
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277	
	kVA	45.0	46.3	46.3	48.0	50.0	52 <mark>.</mark> 5	52.5	55.0	53.1	55.0	55.0	58.1	55.0	56.3	56.3	60.0	
	kW	36.0	37.0	37.0	38.4	40.0	42.0	42.0	44.0	42.5	44.0	44.0	46.5	44.0	45.0	45.0	48.0	
	Efficiency (%)	87.7	88.1	88.4	88.6	87.1	87.5	87.9	88.1	86.7	87.2	87.7	87.8	86.5	87.1	87.5	87.6	
	kW Input	41.0	42.0	41.9	43.3	45.9	48.0	ل 47.8	49.9	49.0	50.5	50.2	52.9	50.9	51.7	51.5	54.8	
								J										

DIMENSIONS

	SINGLE BEARING MACHINES ONLY												
ADAPTOR	A	В	С	D	COUPLING DISCS	AN							
SAE 1	724,3	661,3	224,3	191,3	SAE 8	61,90							
SAE 2	710	647	210	177	SAE 10	53,98							
SAE 3	710	647	210	177	SAE 11,5	39,68							
SAE 4	710	647	210	177	SAE 14	25,40							


Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

UCI224D - Winding 311 Technica

UCI224D SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This deexcites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

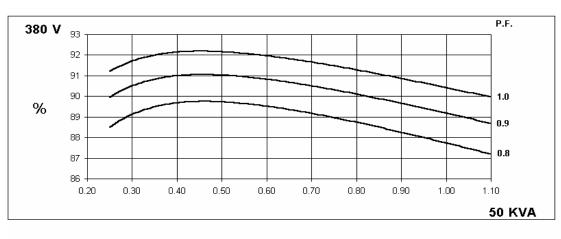
Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

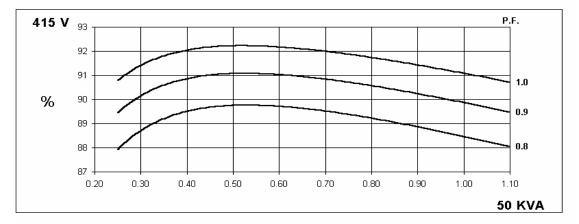
Front cover drawing typical of product range.

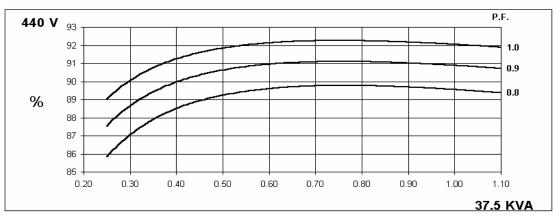
WINDING 311

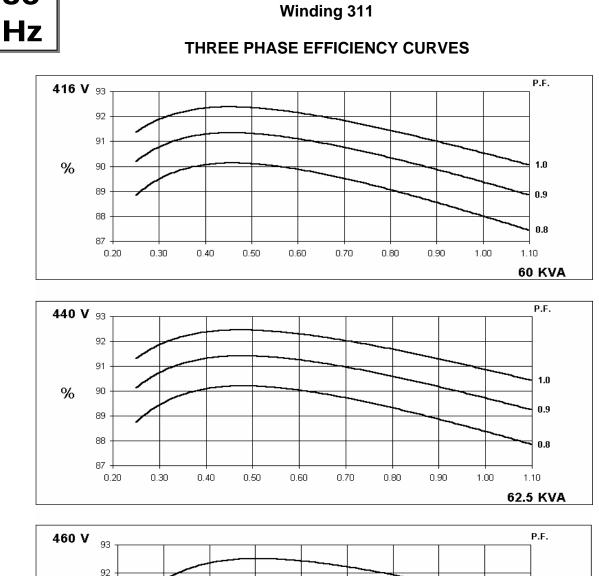
		WIN	IDING 31	1									
CONTROL SYSTEM	SEPARATE	LY EXCITED) BY P.M.G.										
A.V.R.	MX321	MX341											
VOLTAGE REGULATION	+ 0.5 %	± 0.5 % ± 1.0 % With 4% ENGINE GOVERNING											
SUSTAINED SHORT CIRCUIT		REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)											
			CON DECKE										
CONTROL SYSTEM	SELF EXCIT	ELF EXCITED											
A.V.R.	SX460	SX460 AS440											
VOLTAGE REGULATION	± 1.0 %	± 1.0 %	With 4% EN	GINE GOVE	RNING								
SUSTAINED SHORT CIRCUIT	SERIES 4 C	SERIES 4 CONTROL DOES NOT SUSTAIN A SHORT CIRCUIT CURRENT											
INSULATION SYSTEM	CLASS H												
PROTECTION				IP2	23								
RATED POWER FACTOR				0.	8								
STATOR WINDING			וסם										
			DOG	TWO T									
				12	_								
STATOR WDG. RESISTANCE		0.129 C	hms PER PH	-		TAR CONNE	CTED						
ROTOR WDG. RESISTANCE				0.64 Ohms									
EXCITER STATOR RESISTANCE				21 Ohms	at 22°C								
EXCITER ROTOR RESISTANCE			0.071	Ohms PER	PHASE AT 2	22°C							
R.F.I. SUPPRESSION	BS EN	61000-6-2 8	BS EN 6100	0-6-4,VDE 0	875G, VDE (875N. refer t	o factory for	others					
WAVEFORM DISTORTION		NO LOAD <	: 1.5% NON-	DISTORTING	G BALANCE	D LINEAR LC	DAD < 5.0%						
MAXIMUM OVERSPEED			\leq	2250 R	ev/Min								
BEARING DRIVE END			Π	BALL. 6312-	2RS (ISO)								
BEARING NON-DRIVE END				BALL. 6309-	2RS (ISO)								
		1 BE/	ARING		()	2 BEA	RING						
WEIGHT COMP. GENERATOR		28	5 kg			290							
WEIGHT WOUND STATOR		86	i kg			86	kg						
WEIGHT WOUND ROTOR		86.2	28 kg			77.9) kg						
WR ² INERTIA		0.421	6 <mark>kgm²</mark>			0.4198	kgm ²						
SHIPPING WEIGHTS in a crate			7 <mark>kg</mark>			311	kg						
PACKING CRATE SIZE			x <mark>96(c</mark> m)			97 x 57 x	, ,						
						60							
			-< <mark>2%</mark>			TIF<							
	200/220		ec 458 cfm	440/054	44.0/0.40	0.281 m ³ /se	1	400/077					
VOLTAGE SERIES STAR VOLTAGE PARALLEL STAR	380/220 190/110	400/231 200/115	415/240 208/120	440/254	416/240 208/120	440/254 220/127	460/266 230/133	480/277 240/138					
VOLTAGE PARALLEL STAR	220/110	230/115	240/120	254/127	200/120	254/127	266/133	240/138					
kVA BASE RATING FOR REACTANCE													
VALUES	50	50	50	37.5	60	62.5	62.5	65					
Xd DIR. AXIS SYNCHRONOUS	2.33	2.10	1.95	1.30	3.04	2.83	2.59	2.47					
X'd DIR. AXIS TRANSIENT	0.18	0.16	0.15	0.10	0.22	0.20	0.19	0.18					
X"d DIR. AXIS SUBTRANSIENT	0.12	0.11	0.10	0.07	0.15	0.14	0.13	0.12					
Xq QUAD. AXIS REACTANCE	1.07	0.97	0.90	0.60	1.40	1.30	1.19	1.14					
X"q QUAD. AXIS SUBTRANSIENT	0.14	0.13	0.12	0.08	0.14	0.13	0.12	0.11					
	0.07	0.06	0.06	0.04	0.09	0.08	0.08	0.07					
X2 NEGATIVE SEQUENCE	0.13	0.12	0.11	0.07	0.14	0.13	0.12	0.11					
X0ZERO SEQUENCE	0.08	0.08		0.05				0.07					
REACTANCES ARE SATURAT T'd TRANSIENT TIME CONST.		V	ALUES ARE	<u>PER UNIT A</u> 0.02				ט					
T''d SUB-TRANSTIME CONST.				0.02									
T'do O.C. FIELD TIME CONST.				0.7									
Ta ARMATURE TIME CONST.				0.00	55 s								
	1/Xd												

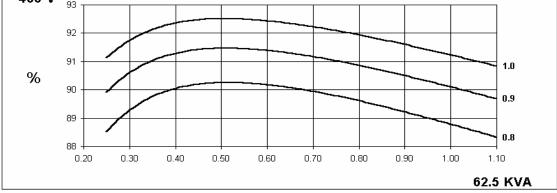


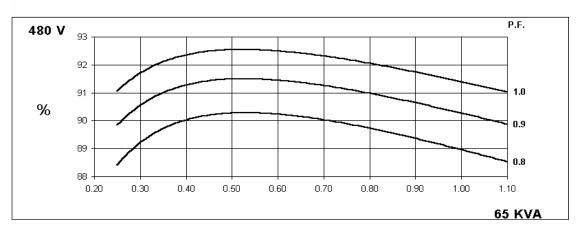

50


Hz

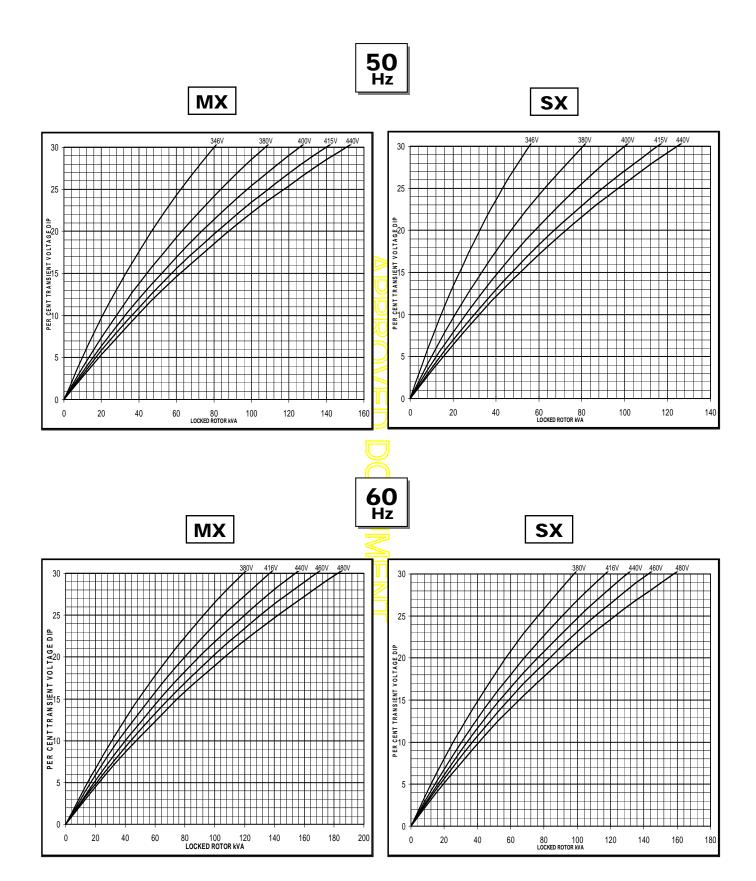

Winding 311

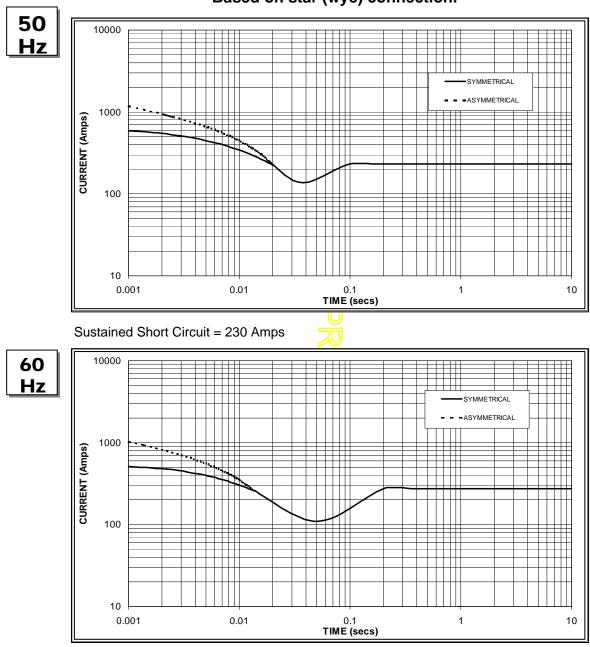

THREE PHASE EFFICIENCY CURVES





60


STAMFORD



Winding 311

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 275 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz					
Voltage	Factor	Voltage	Factor				
380v	X 1.00	416v	X 1.00				
400v	X 1.07	440v	X 1.06				
415v	X 1.12	460v	X 1.12				
440v	X 1.18	480v	X 1.17				
The sustained current value is constant irrespective							

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

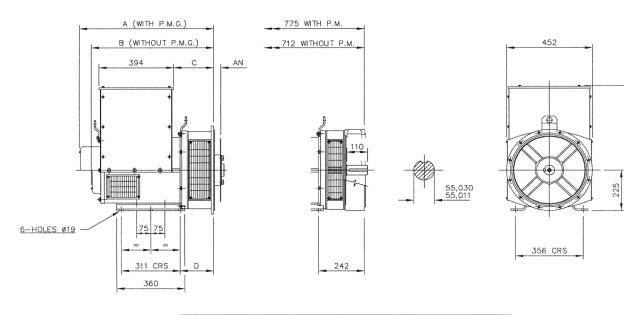
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732


690

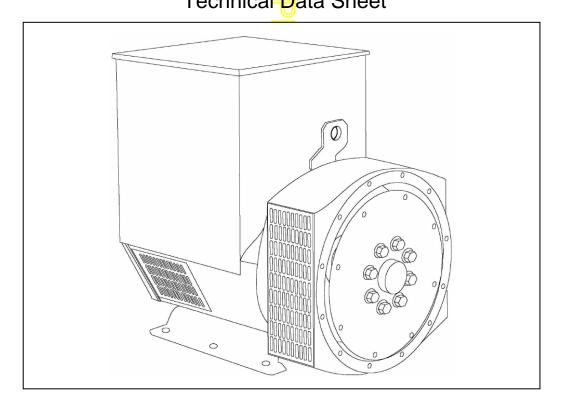
Winding 311 / 0.8 Power Factor

RATI	NGS
------	-----

	KATINOO																
	Class - Temp Rise	Cont. F - 105/40°C				Cont. H - 125/40°C			Standby - 150/40°C				Standby - 163/27°C				
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	45.0	45.0	45.0	33.6	50.0	50.0	50.0	37.5	53.0	53.0	53.0	39.1	55.0	55.0	55.0	41.2
	kW	36.0	36.0	36.0	26.9	40.0	40.0	40.0	30.0	42.4	42.4	42.4	31.3	44.0	44.0	44.0	33.0
	Efficiency (%)	88.3	88.6	88.9	89.7	87.7	88.2	88.5	89.6	87.4	87.9	88.2	89.5	87.2	87.7	88.0	89.4
	kW Input	40.8	40.6	40.5	30.0	45.6	45.4	45.2	33.5	48.5	48.2	48.1	35.0	50.5	50.2	50.0	36.9
-							1			•							
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Derellel Ster (\/)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	52.5	55.0	56.0	58.0	60.0	62.5	62.5	65.0	62.5	65.0	65.0	68.8	65.0	66.3	66.3	71.3
	kW	42.0	44.0	44.8	46.4	48.0	50.0	50.0	52.0	50.0	52.0	52.0	55.0	52.0	53.0	53.0	57.0
	Efficiency (%)	88.7	89.0	89.2	89.4	88.0	88.4	88.8	89.0	87.8	88.2	88.6	88.7	87.5	88.1	88.5	88.5
	kW Input	47.4	49.4	50.2	51.9	54.5	56.6	56.3	58.4	56.9	59.0	58.7	62.1	59.4	60.2	59.9	64.5
								J									

DIMENSIONS

SINGLE BEARING MACHINES ONLY											
ADAPTOR	A	В	С	D	COUPLING DISCS	AN					
SAE 1	724,3	661,3	224,3	191,3	SAE 8	61,90					
SAE 2	710	647	210	177	SAE 10	53,98					
SAE 3	710	647	210	177	SAE 11,5	39,68					
SAE 4	710	647	210	177	SAE 14	25,40					


Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

UCI224E - Winding 311 Technical Data Sheet

UCI224E SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This deexcites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

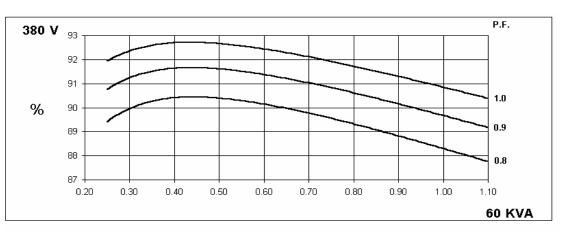
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

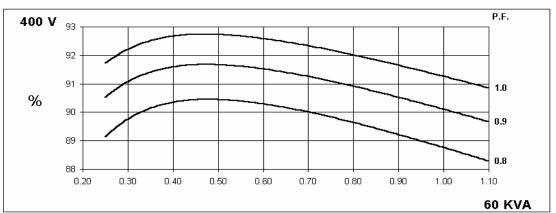
Front cover drawing typical of product range.

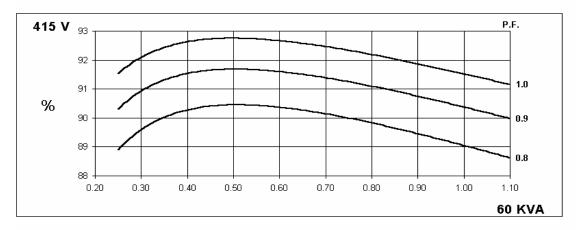
UCI224E

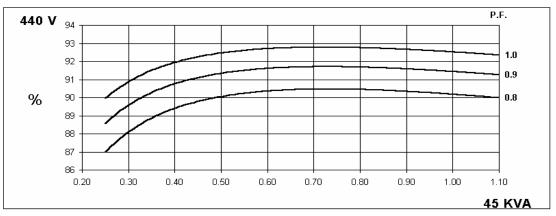
WINDING 311

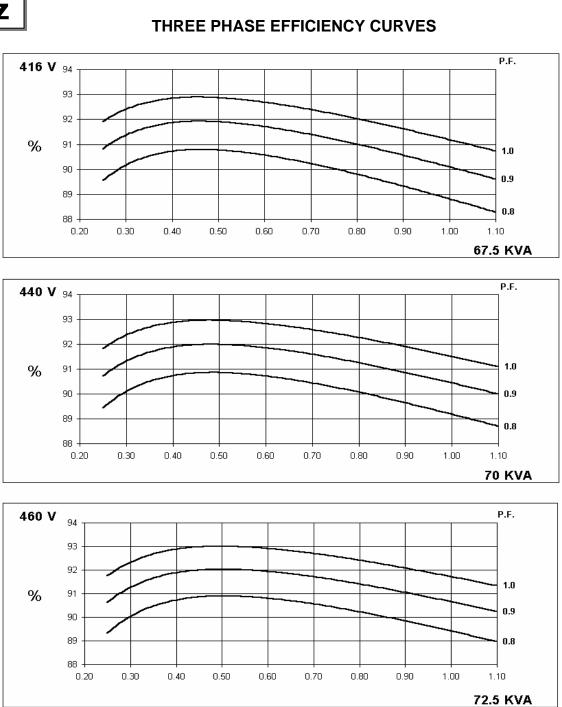
WINDING 311													
CONTROL SYSTEM	SEPARATE	LY EXCITED) BY P.M.G.										
A.V.R.	MX321	MX341											
VOLTAGE REGULATION	+ 0.5 %	± 0.5 % ± 1.0 % With 4% ENGINE GOVERNING											
SUSTAINED SHORT CIRCUIT		REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)											
	INET EIX TO		CON DECKE										
CONTROL SYSTEM	SELF EXCIT	ELF EXCITED											
A.V.R.	SX460	SX460 AS440											
VOLTAGE REGULATION	± 1.0 %	± 1.0 %	With 4% EN	GINE GOVE	RNING								
SUSTAINED SHORT CIRCUIT	SERIES 4 C	SERIES 4 CONTROL DOES NOT SUSTAIN A SHORT CIRCUIT CURRENT											
INSULATION SYSTEM	CLASS H												
PROTECTION		IP23											
RATED POWER FACTOR				0.	8								
STATOR WINDING			וסם										
			200	TWO T									
				1:	_								
STATOR WDG. RESISTANCE		0.101 C	hms PER PH			TAR CONNE	ECTED						
ROTOR WDG. RESISTANCE				0.69 Ohm:									
EXCITER STATOR RESISTANCE				20 Ohms	at 22°C								
EXCITER ROTOR RESISTANCE			0.078	Ohms PER	PHASE AT 2	22°C							
R.F.I. SUPPRESSION	BS EN	61000-6-2 8	BS EN 6100	0-6-4,VDE 0	875G, VDE (875N. refer t	to factory for	others					
WAVEFORM DISTORTION		NO LOAD <	: 1.5% NON-	DISTORTING	BALANCE	D LINEAR LC	DAD < 5.0%						
MAXIMUM OVERSPEED			\leq	2250 R	ev/Min								
BEARING DRIVE END			Π	BALL. 6312-	2RS (ISO)								
BEARING NON-DRIVE END				BALL. 6309-	2RS (ISO)								
		1 BE/	ARING		· · · ·	2 BEA	RING						
WEIGHT COMP. GENERATOR		31	1 kg			330							
WEIGHT WOUND STATOR		103	3 kg			103	kg						
WEIGHT WOUND ROTOR		95.8	39 kg			87.5	2 kg						
WR ² INERTIA		0.499	9 <mark>kgm²</mark>			0.4682	kgm ²						
SHIPPING WEIGHTS in a crate			4 <mark>kg</mark>			351	kg						
PACKING CRATE SIZE			′ x 96(cm)			105 x 57	. ,						
						60							
			< <mark>2%</mark>			TIF							
	200/200		ec 458 cfm	440/054	44.0/0.40	0.281 m ³ /se	1	400/077					
VOLTAGE SERIES STAR VOLTAGE PARALLEL STAR	380/220 190/110	400/231 200/115	415/240 208/120	440/254 220/127	416/240 208/120	440/254 220/127	460/266 230/133	480/277 240/138					
VOLTAGE PARALLEL STAR	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138					
kVA BASE RATING FOR REACTANCE		60	60	45	67.5	70	72.5	75					
VALUES													
Xd DIR. AXIS SYNCHRONOUS	2.48	2.24	2.08	1.39	3.00	2.78	2.64	2.50					
X'd DIR. AXIS TRANSIENT	0.19	0.17	0.16	0.11	0.22	0.20	0.19	0.18					
X"d DIR. AXIS SUBTRANSIENT Xq QUAD. AXIS REACTANCE	0.13	0.12	0.11	0.07	0.15	0.14	0.13	0.13 1.15					
X"q QUAD. AXIS REACTAINCE	0.14	0.13	0.95	0.63	0.14	0.13	0.12	0.12					
XLLEAKAGE REACTANCE	0.14	0.13	0.12	0.08	0.14	0.13	0.12	0.12					
X2 NEGATIVE SEQUENCE	0.08	0.08	0.07	0.05	0.09	0.08	0.08	0.08					
X0 ZERO SEQUENCE	0.13	0.12	0.09	0.07	0.14	0.13	0.12	0.12					
REACTANCES ARE SATURAT			ALUES ARE										
T'd TRANSIENT TIME CONST.				0.02									
T"d SUB-TRANSTIME CONST.				0.00	7 s								
T'do O.C. FIELD TIME CONST.				0.7									
Ta ARMATURE TIME CONST.				0.00									
SHORT CIRCUIT RATIO	1/Xd												

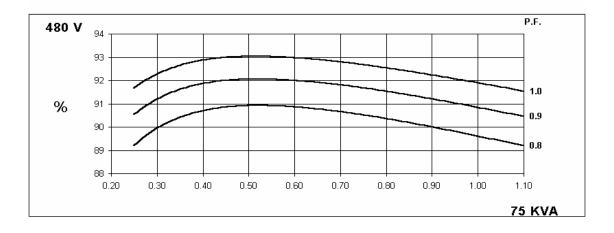


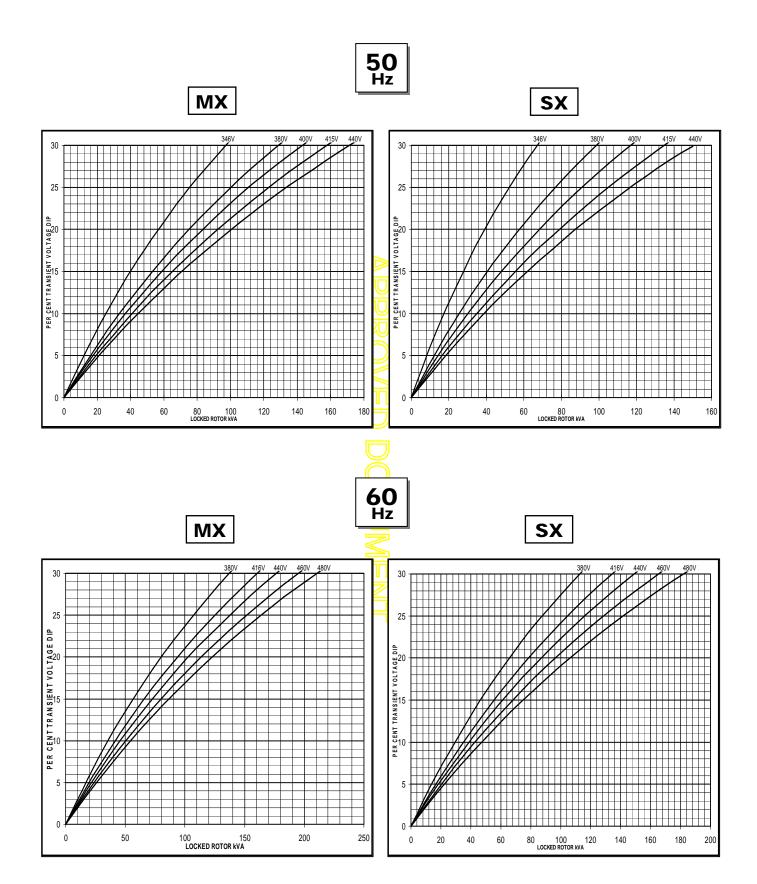

50 Hz

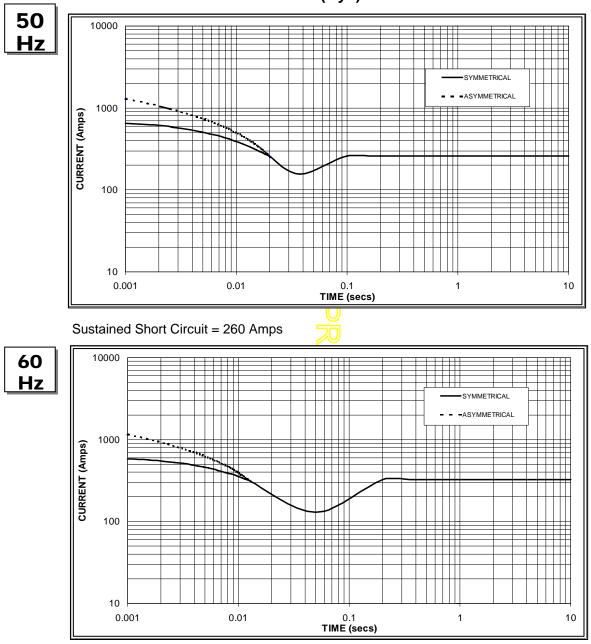

UCI224E


Winding 311


THREE PHASE EFFICIENCY CURVES






Winding 311

UCI224E

Winding 311

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 325 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz						
Voltage	Factor	Voltage	Factor					
380v	X 1.00	416v	X 1.00					
400v	X 1.07	440v	X 1.06					
415v	X 1.12	460v	X 1.12					
440v	X 1.18	480v	X 1.17					
The sustaine	d current val	ua is constan	t irrespective					

The sustained current value is constant irrespective of voltage level

Note 2

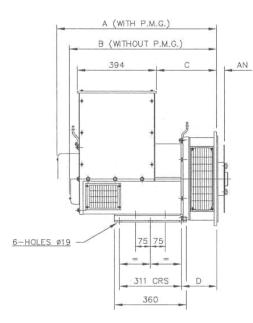
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

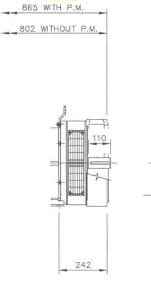
All other times are unchanged

Note 3

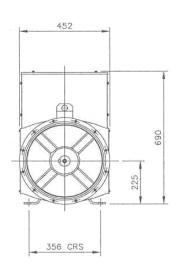
Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :


Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732

UCI224E

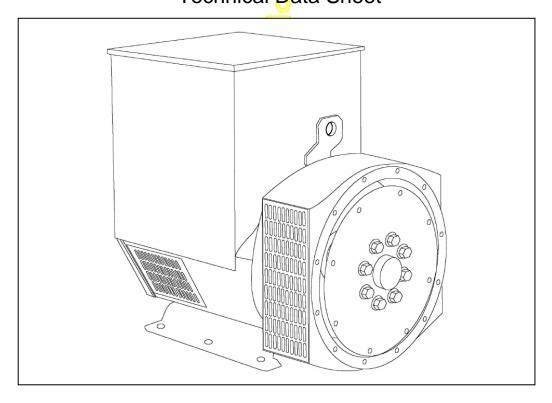


Winding 311 / 0.8 Power Factor


	NATING																
	Class - Temp Rise	C	ont. F -	105/40	Ő	Co	ont. H -	125/40	°C	Standby - 150/40°C				Standby - 163/27°C			
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	53.0	53.0	53.0	40.3	60.0	60.0	60.0	45.0	61.0	61.0	61.0	45.8	63.0	63.0	63.0	47.3
	kW	42.4	42.4	42.4	32.2	48.0	48.0	48.0	36.0	48.8	48.8	48.8	36.6	50.4	50.4	50.4	37.8
	Efficiency (%)	88.9	89.3	89.5	90.3	88.3	88.8	89.1	90.2	88.2	88.7	89.0	90.2	88.0	88.5	88.8	90.1
	kW Input	47.7	47.5	47.4	35.7	54.4	54.1	53.9	39.9	55.3	55.0	54.8	40.6	57.3	56.9	56.8	42.0
							7			-				-			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	62.5	65.0	65.0	68.0	67.5	70.0	72.5	75.0	70.0	73.8	73.8	78.8	72.5	75.0	75.0	80.0
	kW	50.0	52.0	52.0	54.4	54.0	56.0	58.0	60.0	56.0	59.0	59.0	63.0	58.0	60.0	60.0	64.0
	Efficiency (%)	89.2	89.5	89.9	90.0	88.8	89.2	89.4	89.6	88.6	88.9	89.3	89.4	88.4	88.8	89.3	89.3
	kW Input	56.1	58.1	57.8	60.4	60.8	62.8	64.9	67.0	63.2	66.4	66.1	70.5	65.6	67.6	67.2	71.7
								J									

55,030 55,011

	SINC	GLE BEAR	ING MACH	HINES ON	LY	
ADAPTOR	A	В	C	D	COUPLING DISCS	AN
SAE 1	814,3	751,3	314,3	191,3	SAE 8	61,90
SAE 2	800	737	300	177	SAE 10	53,98
SAE 3	800	737	300	177	SAE 11,5	39,68
SAE 4	800	737	300	177	SAE 14	25,40


Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

UCI224F - Winding 311 Technical Data Sheet

UCI224F SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This deexcites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

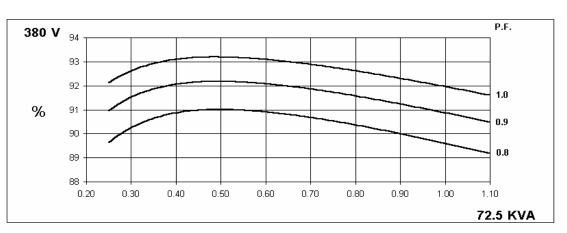
3% for every 5°C by which the operational ambient temperature exceeds 40°C.

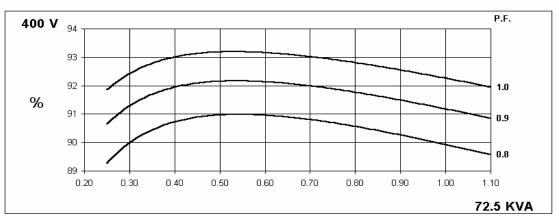
Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

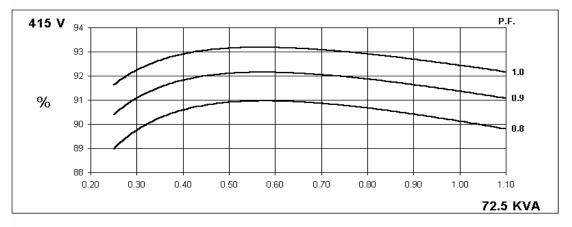
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

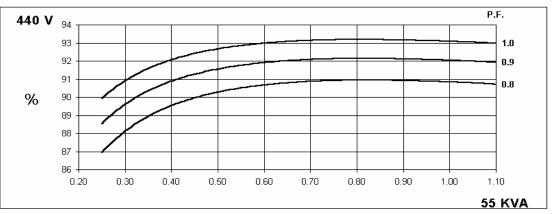
Front cover drawing typical of product range.

UCI224F

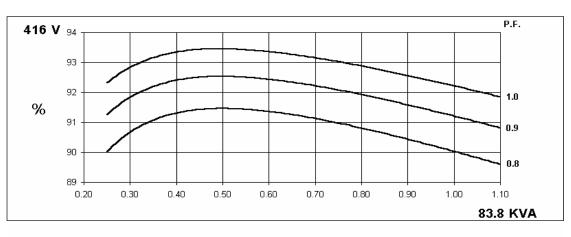

WINDING 311

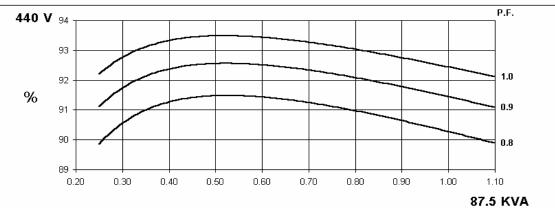

		VVIN	IDING 31	1								
CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.									
A.V.R.	MX321	MX341										
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	GINE GOVE	RNING							
SUSTAINED SHORT CIRCUIT			CUIT DECRE		-							
	REFER TO											
CONTROL SYSTEM	SELF EXCIT	ΓED										
A.V.R.	SX460	SX460 AS440										
VOLTAGE REGULATION	± 1.0 %	± 1.0 % ± 1.0 % With 4% ENGINE GOVERNING										
SUSTAINED SHORT CIRCUIT	SERIES 4 C	RIES 4 CONTROL DOES NOT SUSTAIN A SHORT CIRCUIT CURRENT										
INSULATION SYSTEM		CLASS H										
PROTECTION				IP2	23							
RATED POWER FACTOR				0.	8							
STATOR WINDING			DOL	JBLE LAYER		RIC						
WINDING PITCH				TWO T	HIRDS	-						
WINDING LEADS				1:								
STATOR WDG. RESISTANCE		0.065.0			_		ECTED					
ROTOR WDG. RESISTANCE		0.000 C		0.83 Ohm								
				20 Ohms								
EXCITER STATOR RESISTANCE												
EXCITER ROTOR RESISTANCE		0.078 Ohms PER PHASE AT 22°C										
R.F.I. SUPPRESSION	BS EN	BS EN 61000-6-2 & BS EN 61000-6-4, VDE 0875G, VDE 0875N. refer to factory for others										
WAVEFORM DISTORTION		NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0%										
MAXIMUM OVERSPEED		2250 Rev/Min										
BEARING DRIVE END		BALL. 6312-2RS (ISO)										
BEARING NON-DRIVE END				BALL. 6309-	-2RS (ISO)							
		1 BE/	ARING			2 BEA	RING					
WEIGHT COMP. GENERATOR		33	7 kg			350	kg					
WEIGHT WOUND STATOR			0 <mark>kg</mark>			120	-					
WEIGHT WOUND ROTOR			69 kg		102.32 kg							
WR ² INERTIA			1 kgm ²		0.5754 kgm ²							
SHIPPING WEIGHTS in a crate			0 <mark>kg</mark>		371 kg							
PACKING CRATE SIZE			x 96(cm)			105 x 57	. ,					
			Hz - - 2%		60 Hz TIF<50							
TELEPHONE INTERFERENCE			e <mark>c 45</mark> 8 cfm			0.281 m³/se						
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277				
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138				
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138				
KVA BASE RATING FOR REACTANCE	72.5	72.5	72.5	55	83.8	87.5	87.5	93.8				
VALUES Xd DIR. AXIS SYNCHRONOUS	2.29	2.07	1.92	1.30	2.52	2.35	2.15	2.12				
X'd DIR. AXIS TRANSIENT	0.18	0.16	0.15	0.10	0.21	0.20	0.18	0.18				
X"d DIR. AXIS SUBTRANSIENT	0.10	0.10	0.10	0.10	0.21	0.20	0.10	0.10				
Xq QUAD. AXIS REACTANCE	1.05	0.95	0.88	0.59	1.16	1.08	0.99	0.98				
X"q QUAD. AXIS SUBTRANSIENT	0.16	0.14	0.13	0.09	0.13	0.12	0.00	0.00				
XL LEAKAGE REACTANCE	0.07	0.06	0.06	0.04	0.08	0.07	0.07	0.07				
X2 NEGATIVE SEQUENCE	0.14	0.13	0.12	0.08	0.13	0.12	0.11	0.11				
X0ZERO SEQUENCE	0.14	0.10	0.09	0.06	0.10	0.09	0.09	0.08				
REACTANCES ARE SATURAT			ALUES ARE									
T'd TRANSIENT TIME CONST.				0.0								
T"d SUB-TRANSTIME CONST.				0.00)8 s							
T'do O.C. FIELD TIME CONST.				0.7								
Ta ARMATURE TIME CONST.				0.00								
SHORT CIRCUIT RATIO				1/>	Ka							

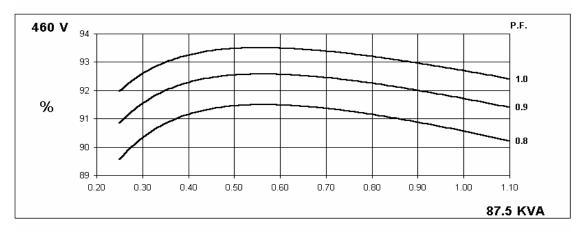


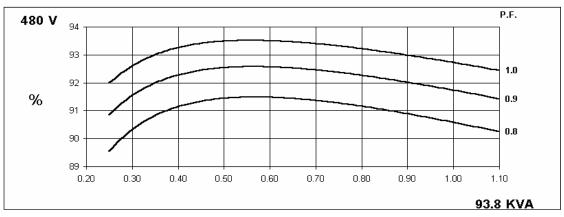


THREE PHASE EFFICIENCY CURVES

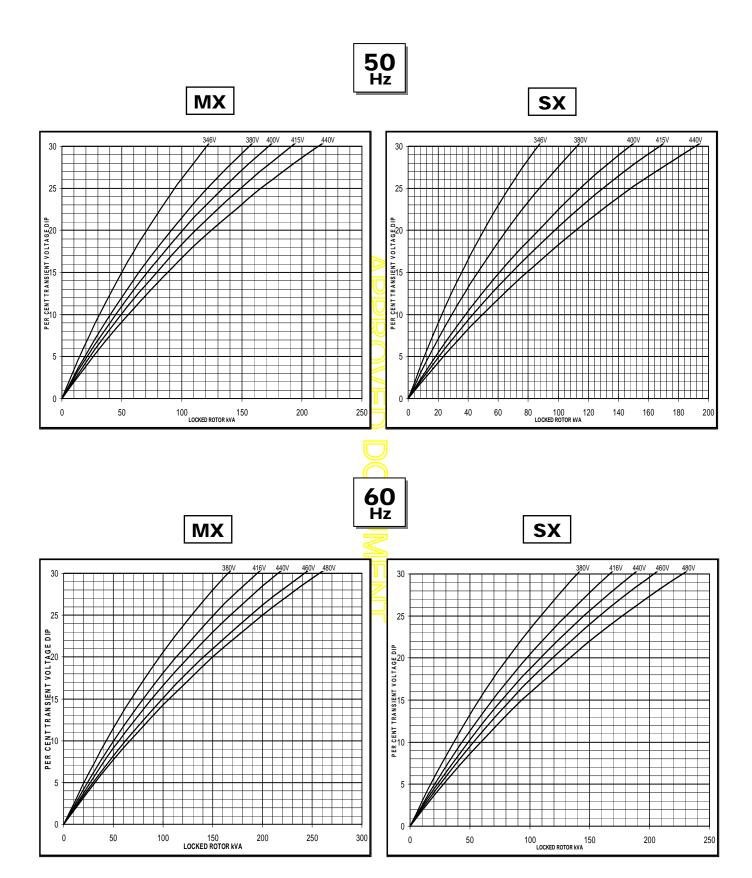

UCI224F

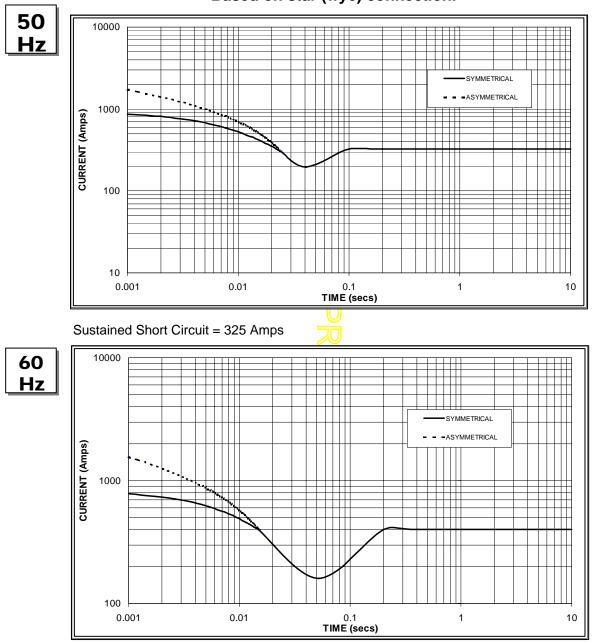

60


Hz


Winding 311

THREE PHASE EFFICIENCY CURVES





UCI224F

Winding 311

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 400 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz						
Voltage	Factor	Voltage	Factor					
380v	X 1.00	416v	X 1.00					
400v	X 1.07	440v	X 1.06					
415v	X 1.12	460v	X 1.12					
440v	X 1.18	480v	X 1.17					
The sustaine	d current val	ua is constan	t irrespective					

The sustained current value is constant irrespective of voltage level

Note 2

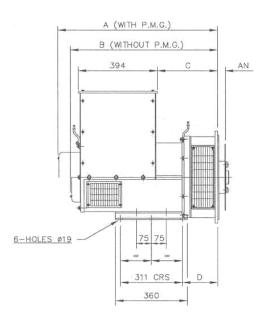
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

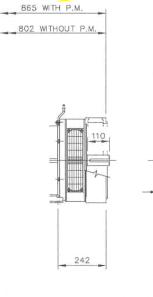
All other times are unchanged

Note 3

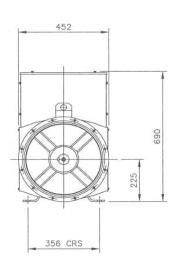
Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :


Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732

UCI224F

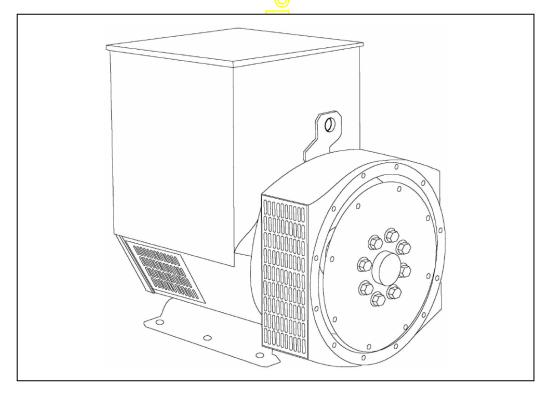


Winding 311 / 0.8 Power Factor


	NATING O																
	Class - Temp Rise	C	ont. F -	105/40	Ő	Co	ont. H -	125/40	ъ	St	andby -	150/40	°C	St	andby -	163/27	″°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	65.0	65.0	65.0	48.7	72.5	72.5	72.5	55.0	77.0	77.0	77.0	58.0	80.0	80.0	80.0	60.5
	kW	52.0	52.0	52.0	39.0	58.0	58.0	58.0	44.0	61.6	61.6	61.6	46.4	64.0	64.0	64.0	48.4
	Efficiency (%)	90.0	90.3	90.4	90.9	89.6	89.9	90.1	90.8	89.4	89.7	89.9	90.8	89.2	89.6	89.8	90.7
	kW Input	57.8	57.6	57.5	42.9	64.7	64.5	64.4	48.5	68.9	68.7	68.5	51.1	71.7	71.4	71.3	53.4
							7										
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	75.0	78.1	78.1	82.5	83.8	87.5	87.5	93.8	88.8	92.5	92.5	100.0	91.9	95.0	95.0	102.5
	kW	60.0	62.5	62.5	66.0	67.0	70.0	70.0	75.0	71.0	74.0	74.0	80.0	73.5	76.0	76.0	82.0
	Efficiency (%)	90.5	90.7	90.9	91.0	90.0	90. <mark>3</mark>	90.6	90.6	89.8	90.1	90.4	90.4	89.6	89.9	90.3	90.3
	kW Input	66.3	68.9	68.7	72.5	74.5	77.5	77.3	82.8	79.1	82.1	81.9	88.5	82.1	84.5	84.2	90.8
								J									

55,030 55,011

	SINC	CLE BEAR	ING MACH	HINES ON	LY	
ADAPTOR	A	В	C	D	COUPLING DISCS	AN
SAE 1	814,3	751,3	314,3	191,3	SAE 8	61,90
SAE 2	800	737	300	177	SAE 10	53,98
SAE 3	800	737	300	177	SAE 11,5	39,68
SAE 4	800	737	300	177	SAE 14	25,40


Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

UCI224G - Winding 311 Technica

UCI224G SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This deexcites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

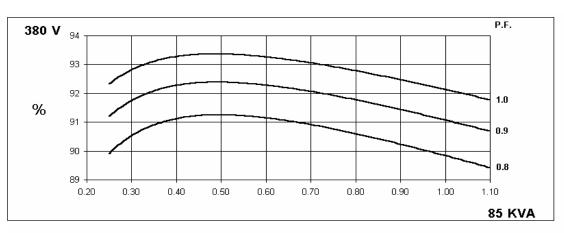
3% for every 5°C by which the operational ambient temperature exceeds 40°C.

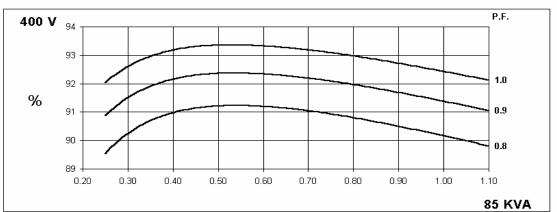
Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

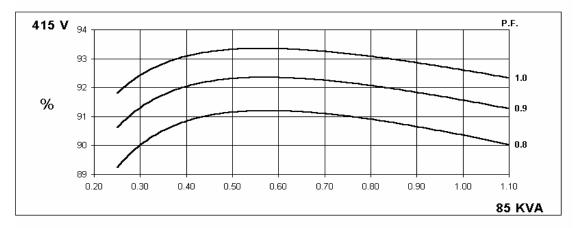
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

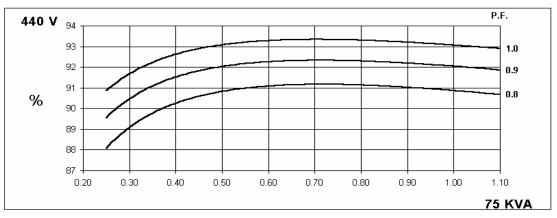
Front cover drawing typical of product range.

WINDING 311

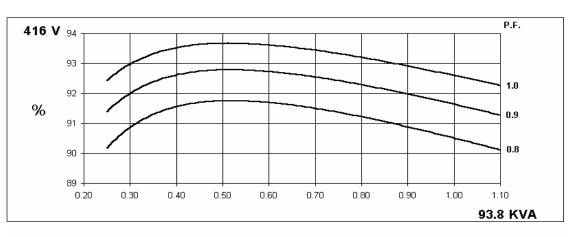

		WIN	IDING 31	1								
CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.									
A.V.R.	MX321	MX341										
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	GINE GOVE	RNING							
SUSTAINED SHORT CIRCUIT			CUIT DECRE		-							
CONTROL SYSTEM	SELF EXCIT	TED										
A.V.R.	SX460	AS440										
VOLTAGE REGULATION	± 1.0 %	± 1.0 % ± 1.0 % With 4% ENGINE GOVERNING										
SUSTAINED SHORT CIRCUIT	SERIES 4 C	ONTROL DO	DES NOT SU	STAIN A SH	ORT CIRCUI	T CURRENT	-					
INSULATION SYSTEM				CLAS	SS H							
PROTECTION				IP2	23							
RATED POWER FACTOR				0.	8							
STATOR WINDING												
			DOC									
WINDING PITCH				TWO T								
WINDING LEADS				1:	_							
STATOR WDG. RESISTANCE		0.055 C	hms PER PH	IASE AT 22°	C SERIES S	TAR CONNE	ECTED					
ROTOR WDG. RESISTANCE				0.94 Ohms	s at 22°C							
EXCITER STATOR RESISTANCE				20 Ohms	at 22°C							
EXCITER ROTOR RESISTANCE			0.078	B Ohms PER	PHASE AT 2	22°C						
R.F.I. SUPPRESSION	BS EN	61000-6-2 8	BS EN 6100	0-6-4,VDE 0	875G, VDE (875N. refer t	o factory for	others				
WAVEFORM DISTORTION		NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0%										
MAXIMUM OVERSPEED			\leq	2250 R	ev/Min							
BEARING DRIVE END		BALL. 6312-2RS (ISO)										
BEARING NON-DRIVE END				BALL. 6309-	. ,							
		1 BE/				2 BEA	RING					
WEIGHT COMP. GENERATOR			3 kg			400						
WEIGHT WOUND STATOR			9 k g			139	kg					
WEIGHT WOUND ROTOR		126.	75 kg		118.38 kg							
WR ² INERTIA		0.713	6 kgm ²		0.6818 kgm ²							
SHIPPING WEIGHTS in a crate		404	4 <mark>kg</mark>		420 kg							
PACKING CRATE SIZE			′ x 96(c m)		105 x 57 x 96(cm)							
			HZ		60 Hz							
			- <mark><2%</mark>			TIF						
	000/000	T	ec 458 cfm	440/054	44.0/04.0	0.281 m ³ /se	1	400/077				
VOLTAGE SERIES STAR VOLTAGE PARALLEL STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277				
VOLTAGE PARALLEL STAR	190/110 220/110	200/115 230/115	208/120 240/120	220/127 254/127	208/120 240/120	220/127 254/127	230/133 266/133	240/138 277/138				
kVA BASE RATING FOR REACTANCE												
VALUES	85	85	85	75	93.8	97.5	100	103.8				
Xd DIR. AXIS SYNCHRONOUS	2.43	2.20	2.04	1.60	2.66	2.47	2.32	2.21				
X'd DIR. AXIS TRANSIENT	0.19	0.17	0.16	0.13	0.20	0.19	0.17	0.17				
X"d DIR. AXIS SUBTRANSIENT	0.13	0.12	0.11	0.09	0.14	0.13	0.12	0.12				
Xq QUAD. AXIS REACTANCE	1.12	1.01	0.94	0.74	1.22	1.13	1.06	1.01				
X"q QUAD. AXIS SUBTRANSIENT	0.17	0.15	0.14	0.11	0.15	0.14	0.13	0.12				
	0.07	0.06	0.06	0.05	0.08	0.07	0.07	0.07				
X2 NEGATIVE SEQUENCE	0.16	0.14	0.13	0.10	0.15	0.14	0.13	0.12				
	0.11	0.10	0.09	0.07	0.11	0.10		0.09				
REACTANCES ARE SATURAT T'd TRANSIENT TIME CONST.		V	ALUES ARE	<u>PER UNIT A</u> 0.03		ND VULTAG		ט				
T''d SUB-TRANSTIME CONST.				0.00								
T'do O.C. FIELD TIME CONST.				0.7								
Ta ARMATURE TIME CONST.		0.007 s 1/Xd										

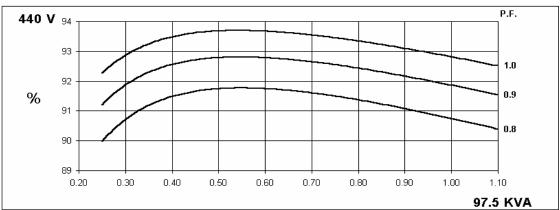


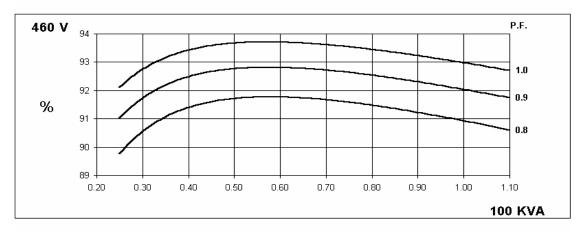


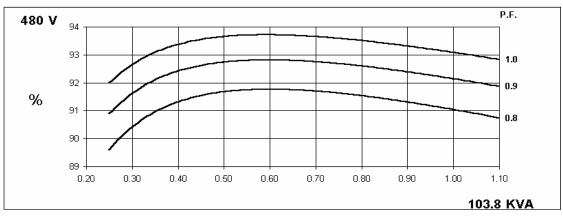

-

THREE PHASE EFFICIENCY CURVES

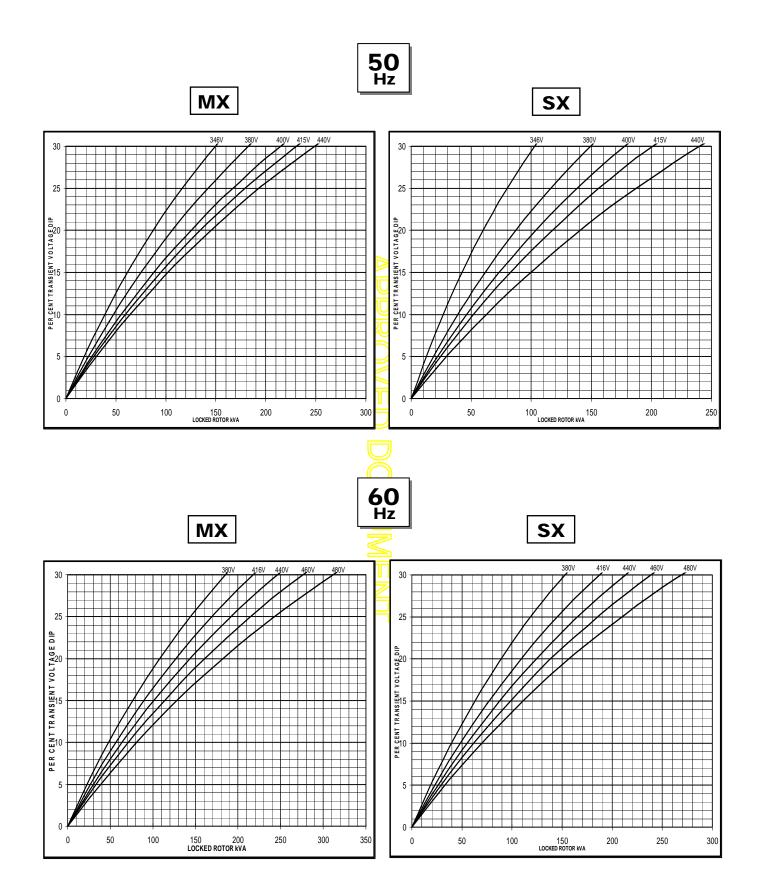


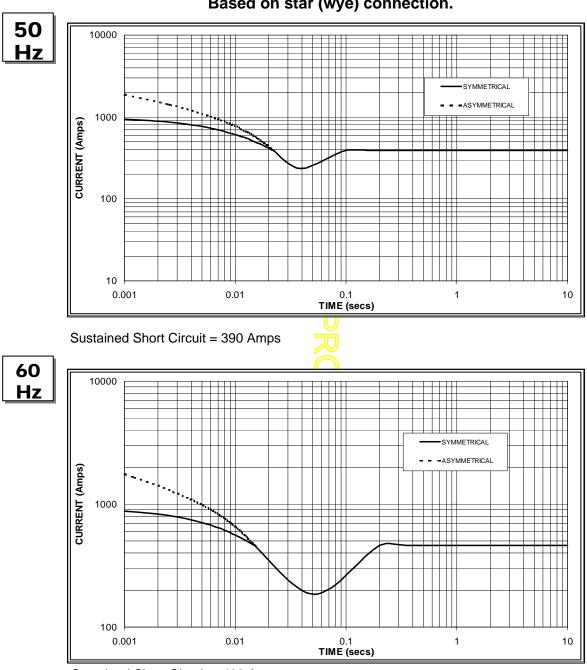

60


Hz


Winding 311

THREE PHASE EFFICIENCY CURVES





Winding 311

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 460 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz						
Voltage	Factor	Voltage	Factor					
380v	X 1.00	416v	X 1.00					
400v	X 1.07	440v	X 1.06					
415v	X 1.12	460v	X 1.12					
440v	X 1.18	480v	X 1.17					
The sustains	d current val	ua is constan	t irrespective					

The sustained current value is constant irrespective of voltage level

Note 2

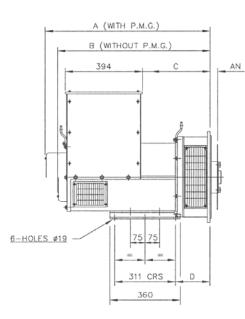
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

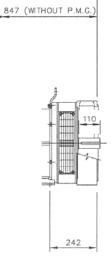
All other times are unchanged

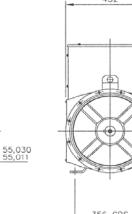
Note 3

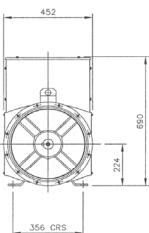
Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :


Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732

Winding 311 / 0.8 Power Factor

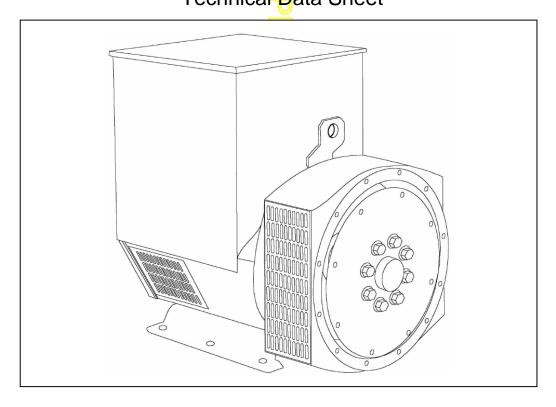

RATINGS


	Class - Temp Rise	Co	Cont. F - 105/40°C			Co	ont. H -	125/40	°C	Standby - 150/40°C			°C	Standby - 163/27°C			
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
Hz	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	75.0	75.0	75.0	67.4	85.0	85.0	85.0	75.0	87.5	87.5	87.5	76.9	90.8	90.8	90.8	80.1
	kW	60.0	60.0	60.0	53.9	68.0	68.0	68.0	60.0	70.0	70.0	70.0	61.5	72.6	72.6	72.6	64.1
	Efficiency (%)	90.3	90.6	90.7	91.0	89.8	90.2	90.4	90.9	89.7	90.1	90.3	90.8	89.6	89.9	90.1	90.7
	kW Input	66.4	66.2	66.2	59.2	75.7	75.4	75.2	66.0	78.0	77.7	77.5	67.7	81.1	80.8	80.6	70.7
							1			_				_			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	87.5	90.0	93.8	95.0	93.8	97.5	100.0	103.8	98.1	102.5	102.5	110.0	101.3	106.3	106.3	113.8
	kW	70.0	72.0	75.0	76.0	75.0	78.0	80.0	83.0	78.5	82.0	82.0	88.0	81.0	85.0	85.0	91.0
	Efficiency (%)	90.8	91.0	91.1	91.3	90.5	90. <mark>8</mark>	90.9	91.0	90.3	90.6	90.9	90.9	90.2	90.4	90.7	90.8
	kW Input	77.1	79.1	82.4	83.2	82.9	85.9	88.0	91.3	86.9	90.5	90.2	96.8	89.8	94.1	93.8	100.3



DIMENSIONS

S	INGLE BEA	COUPLING DISC	S			
ADAPTOR	A	B	С	D	DISC	AN
SAE 1	859,3	796,3	359.3	191,3	SAE 8	61,90
SAE 2	845	782	345	177	SAE 10	53,98
SAE 3	845	782	345	177	SAE 11,5	39,68
SAE 4	845	782	345	177	SAE 14	25,40


Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

UCI274C - Winding 311 Technica Data Sheet

UCI274C SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This deexcites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

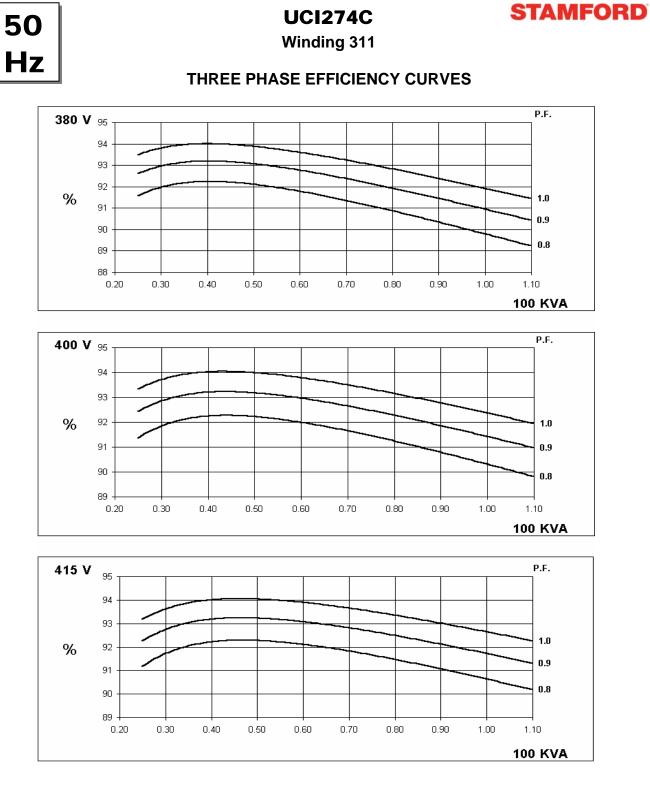
All values tabulated on page 8 are subject to the following reductions

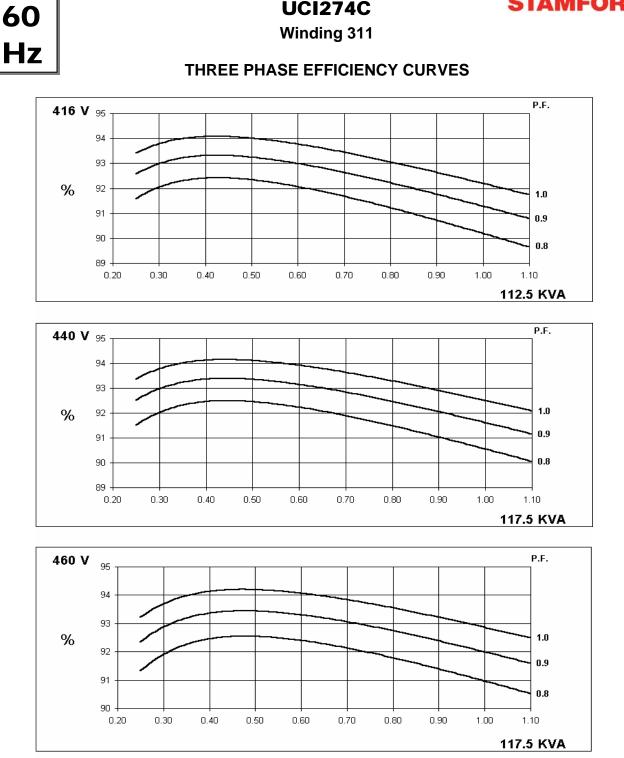
5% when air inlet filters are fitted.

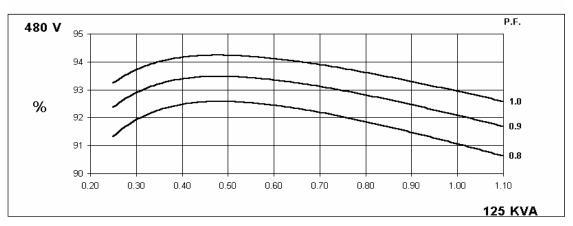
3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

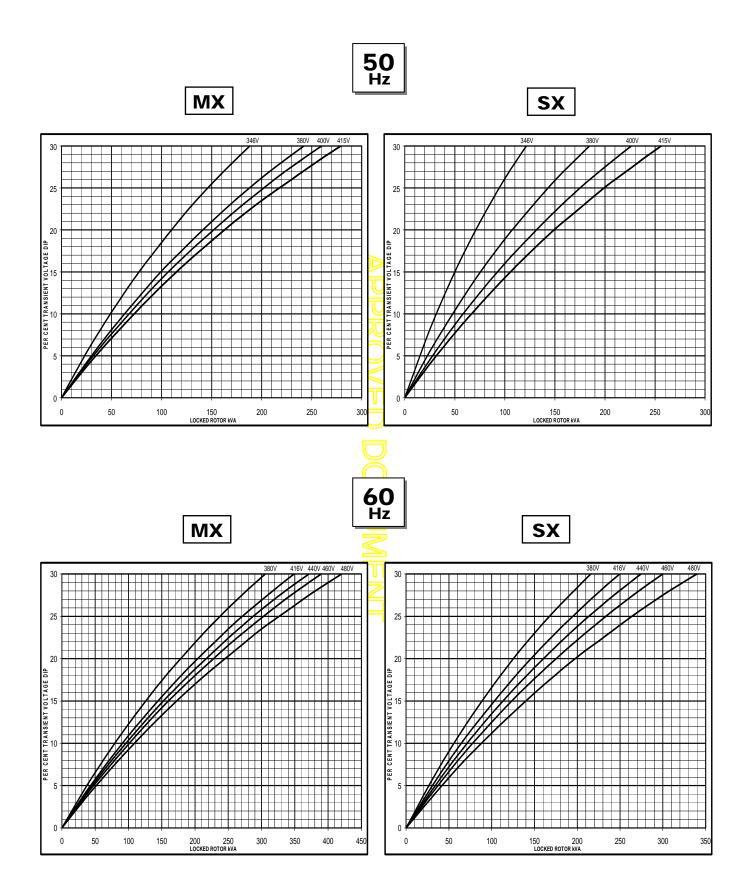
Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.


NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.


Front cover drawing typical of product range.


WINDING 311

_		VVIN	IDING 31	1								
CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.									
A.V.R.	MX321	MX341										
VOLTAGE REGULATION	± 0.5 %	± 0.5 % ± 1.0 % With 4% ENGINE GOVERNING										
SUSTAINED SHORT CIRCUIT	REFER TO	REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)										
CONTROL SYSTEM	SELF EXCIT											
A.V.R.												
		SX460 AS440										
		± 1.0 % ± 1.0 % With 4% ENGINE GOVERNING ERIES 4 CONTROL DOES NOT SUSTAIN A SHORT CIRCUIT CURRENT										
SUSTAINED SHORT CIRCUIT	SERIES 4 C	ONTROL DO	DES NOT SU	STAIN A SH	ORT CIRCUI	II CURRENI						
INSULATION SYSTEM		CLASS H										
PROTECTION				IP	23							
RATED POWER FACTOR				0.	8							
STATOR WINDING			DOI	JBLE LAYEF		RIC						
WINDING PITCH				TWO T	HIRDS							
WINDING LEADS				1:	2							
STATOR WDG. RESISTANCE		0.059 C	hms PER PH	IASE AT 22°	C SERIES S	TAR CONNE	ECTED					
ROTOR WDG. RESISTANCE				1.12 Ohm:	s at 22°C							
EXCITER STATOR RESISTANCE				20 Ohms	at 22°C							
EXCITER ROTOR RESISTANCE			0.078	3 Ohms PER	PHASE AT 2	22°C						
R.F.I. SUPPRESSION	BS EN	61000-6-2 8	BS EN 6100	0-6-4,VDE 0	875G, VDE ()875N. refer t	to factory for	others				
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-	DISTORTING	G BALANCE	D LINEAR LC	DAD < 5.0%					
MAXIMUM OVERSPEED			\leq	2250 R	ev/Min							
BEARING DRIVE END		BALL. 6315-2RS (ISO)										
BEARING NON-DRIVE END				BALL. 6310	-2RS (ISO)							
		1 BE/	ARING			2 BEA	RING					
WEIGHT COMP. GENERATOR			6 kg			420	kg					
WEIGHT WOUND STATOR			1 <mark>kg</mark>			131	-					
WEIGHT WOUND ROTOR			78 kg			122.8	-					
			8 kgm²			0.9781						
SHIPPING WEIGHTS in a crate PACKING CRATE SIZE			9 <mark>kg</mark> x 103(cm)		452 kg 105 x 67 x 103(cm)							
FACKING CRATE SIZE			Hz			60	. ,					
TELEPHONE INTERFERENCE			< <mark>2%</mark>			TIF						
COOLING AIR		0.514 m³/se	ec 1090 cfm			0.617 m ³ /se	c 1308 cfm					
VOLTAGE SERIES STAR	380/220	400/231	41 <mark>5</mark> /240	440/254	416/240	440/254	460/266	480/277				
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138				
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138				
kVA BASE RATING FOR REACTANCE	100	100	100	N/A	112.5	117.5	117.5	125				
Xd DIR. AXIS SYNCHRONOUS	2.45	2.21	2.05	-	2.76	2.58	2.36	2.30				
X'd DIR. AXIS TRANSIENT	0.20	0.18	0.17	-	0.24	0.22	0.21	0.20				
X"d DIR. AXIS SUBTRANSIENT	0.14	0.13	0.12	-	0.16	0.15	0.14	0.13				
Xq QUAD. AXIS REACTANCE	1.59	1.43	1.33	-	1.58	1.48	1.35	1.32				
X"q QUAD. AXIS SUBTRANSIENT	0.18	0.16	0.15	-	0.23	0.21	0.20	0.19				
XL LEAKAGE REACTANCE	0.07	0.06	0.06	-	0.08	0.07	0.07	0.07				
X2 NEGATIVE SEQUENCE	0.16	0.14	0.13	-	0.19	0.18	0.16	0.16				
X0ZERO SEQUENCE	0.10	0.09	0.08	-	0.12	0.11	0.10	0.10				
REACTANCES ARE SATURAT T'd TRANSIENT TIME CONST.	IED	V	ALUES ARE	PER UNIT A 0.02		ND VOLTAG	E INDICATE	U				
T''d SUB-TRANSTIME CONST.				0.02								
T'do O.C. FIELD TIME CONST.				0.8								
Ta ARMATURE TIME CONST.				0.00)7 s							
SHORT CIRCUIT RATIO				1/)	٢d							



STAMFORD

Winding 311

Locked Rotor Motor Starting Curve

50 Hz 10000 SYMMETRICAL - ASYMMETRICAL 1000 CURRENT (Amps) 100 10 0.1 TIME (secs) 0.001 0.01 1 10 Sustained Short Circuit = 430 Amps 60 10000 Hz SYMMETRICAL -ASYMMETRICAL _ _ 1000 CURRENT (Amps) 100 10 0.001 0.01 0.1 TIME (secs) 1 10

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 550 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz						
Voltage	Factor	Voltage	Factor					
380v	X 1.00	416v	X 1.00					
400v	X 1.07	440v	X 1.06					
415v	X 1.12	460v	X 1.12					
		480v	X 1.17					
The eveteine	d ourront vol	ua ia aanatan	tirroopootivo					

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

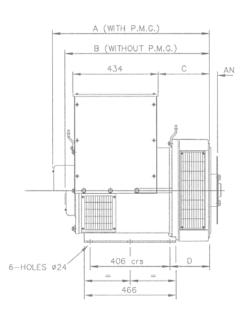
Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732

Winding 311 / 0.8 Power Factor

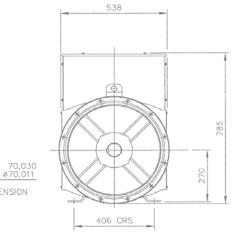
RATINGS

-																	
	Class - Temp Rise	С	Cont. F - 105/40°C			Co	ont. H -	125/40	°C	Standby - 150/40°C			°C	Standby - 163/27°C			
5	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	84.0	84.0	84.0	N/A	100.0	100.0	100.0	N/A	106.0	106.0	106.0	N/A	110.0	110.0	110.0	N/A
	kW	67.2	67.2	67.2	N/A	80.0	80.0	80.0	N/A	84.8	84.8	84.8	N/A	88.0	88.0	88.0	N/A
	Efficiency (%)	90.7	91.1	91.3	N/A	89.8	90.3	90.6	N/A	89.5	90.0	90.4	N/A	89.2	89.8	90.2	N/A
	kW Input	74.1	73.8	73.6	N/A	89.1	88.6	88.3	N/A	94.7	94.2	93.8	N/A	98.7	98.0	97.6	N/A
						_	1			-							
6	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
H		208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	97.5	106.3	106.3	112.5	112.5	117.5	17.5	125.0	116.3	125.0	125.0	132.5	120.0	127.5	127.5	137.5
	kW	78.0	85.0	85.0	90.0	90.0	94.0	94.0	100.0	93.0	100.0	100.0	106.0	96.0	102.0	102.0	110.0
	Efficiency (%)	90.9	91.0	91.4	91.5	90.2	90. <mark>6</mark>	91.0	91.1	90.0	90.2	90.7	90.8	89.8	90.1	90.6	90.6
	kW Input	85.8	93.5	93.0	98.4	99.8	103.8	103.3	109.8	103.4	110.9	110.3	116.7	106.9	113.2	112.6	121.4
								ノ									

126


140

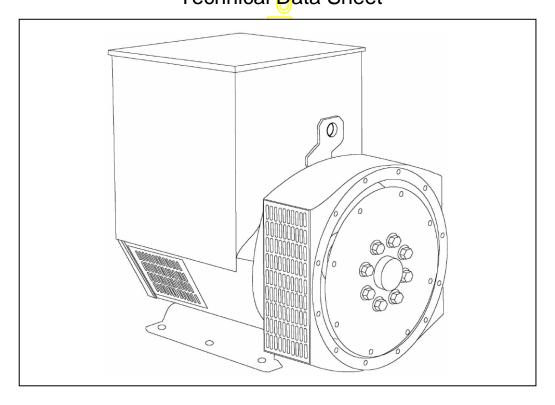
SHAFT EXTENSION


880 (WITH P.M.G.) 817 (WITHOUT P.M.G.)

283

=

SING	LE BEARI	COUPLING DISCS				
ADAPTOR	A	В	С	D	DISC	AN
SAE 1	813,3	750,3	274,3	216,3	SAE 10	53,98
SAE 2	799	736	260	202	SAE 11,5	39,68
SAE 3	799	736	260	202	SAE 14	25,40



www.cumminsgeneratortechnologies.com

Copyright 2021, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

UCI274D - Winding 311 Technica

UCI274D SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This deexcites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

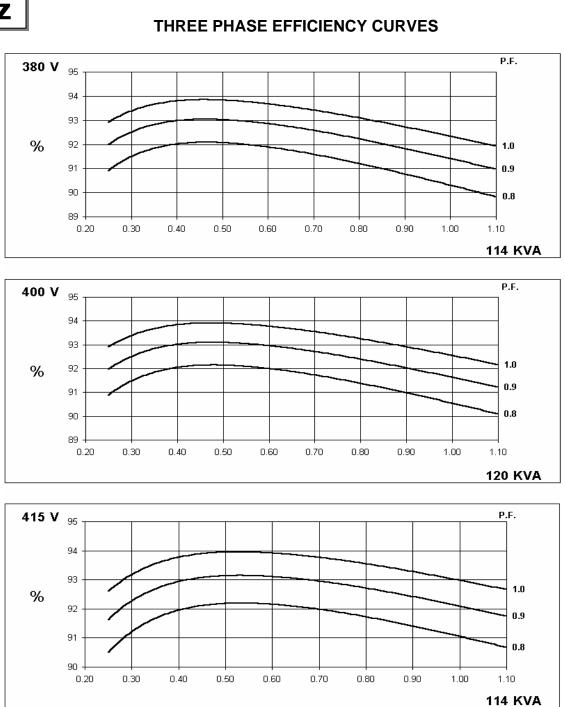
5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.


Front cover drawing typical of product range.

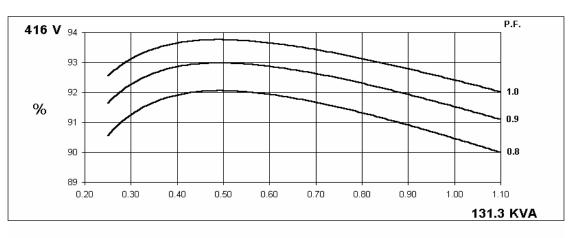
UCI274D

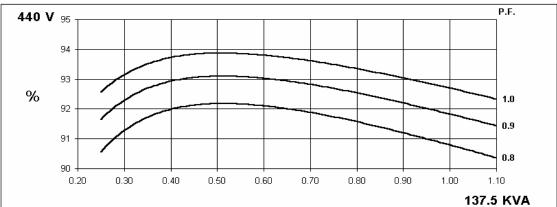
WINDING 311

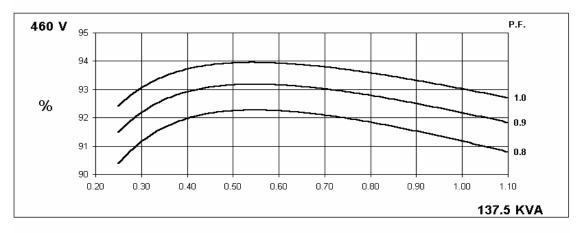
		VVIP	IDING 31	1								
CONTROL SYSTEM	SEPARATE	LY EXCITED	DBY P.M.G.									
A.V.R.	MX321	MX341										
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	GINE GOVE	RNING							
SUSTAINED SHORT CIRCUIT	REFER TO	REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)										
CONTROL SYSTEM	SELF EXCI											
A.V.R.												
		SX460 AS440 ± 1.0 % ± 1.0 % With 4% ENGINE GOVERNING										
	± 1.0 %	± 1.0 %					-					
SUSTAINED SHORT CIRCUIT	SERIES 4 C	UNTRUL D	OES NOT SU	STAIN A SH		I CURRENI						
INSULATION SYSTEM		CLASS H										
PROTECTION				IP:	23							
RATED POWER FACTOR				0.	8							
STATOR WINDING			DOL	JBLE LAYEF	CONCENT	RIC						
WINDING PITCH				TWO T	HIRDS							
WINDING LEADS				1:	2							
STATOR WDG. RESISTANCE		0.044 C	hms PER PH	IASE AT 22°	C SERIES S	TAR CONNE	ECTED					
ROTOR WDG. RESISTANCE				1.26 Ohm	s at 22°C							
EXCITER STATOR RESISTANCE				20 Ohms	at 22°C							
EXCITER ROTOR RESISTANCE			0.078	Ohms PER	PHASE AT 2	22°C						
R.F.I. SUPPRESSION	BS EN	61000-6-2 8	BS EN 6100	0-6-4,VDE 0	875G, VDE ()875N. refer t	to factory for	others				
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-	DISTORTIN	G BALANCE	D LINEAR LC	DAD < 5.0%					
MAXIMUM OVERSPEED			\leq	2250 R	ev/Min							
BEARING DRIVE END				BALL. 6315	-2RS (ISO)							
BEARING NON-DRIVE END				BALL. 6310	()							
		1 BE				2 BEA	RING					
WEIGHT COMP. GENERATOR			1 kg			450	-					
WEIGHT WOUND STATOR			1 k g			141	11 kg					
WEIGHT WOUND ROTOR		149	.37 kg			138.4	138.41 kg					
WR ² INERTIA			2 kgm ²			1.1455 kgm ²						
SHIPPING WEIGHTS in a crate			8 <mark>kg</mark>		476 kg							
PACKING CRATE SIZE			x 103(cm)			105 x 67 >	, ,					
TELEPHONE INTERFERENCE) Hz =< <mark>2% </mark>			60 TIF						
COOLING AIR			- <u>२</u> २ / ec - 1090 cfm			0.617 m³/se						
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277				
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138				
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138				
kVA BASE RATING FOR REACTANCE VALUES	114	120	114	N/A	131.3	137.5	137.5	146.3				
Xd DIR. AXIS SYNCHRONOUS	2.17	2.06	1.82	-	2.52	2.36	2.16	2.11				
X'd DIR. AXIS TRANSIENT	0.18	0.18	0.16	-	0.21	0.20	0.18	0.17				
X"d DIR. AXIS SUBTRANSIENT	0.12	0.11	0.10	-	0.15	0.14	0.13	0.12				
Xq QUAD. AXIS REACTANCE	1.39	1.32	1.17	-	1.49	1.39	1.28	1.25				
X"q QUAD. AXIS SUBTRANSIENT	0.16	0.16	0.14	-	0.21	0.20	0.18	0.17				
X∟LEAKAGE REACTANCE	0.07	0.06	0.06	-	0.07	0.07	0.06	0.06				
X2 NEGATIVE SEQUENCE	0.14	0.13	0.12	-	0.17	0.16	0.15	0.14				
X0ZERO SEQUENCE	0.09	0.08	0.07	-	0.10	0.09	0.09	0.08				
REACTANCES ARE SATURA	TED	V	ALUES ARE	<u>PER UNIT A</u> 0.03		ND VOLTAG	E INDICATE	D				
T'd TRANSIENT TIME CONST. T"d SUB-TRANSTIME CONST.				0.03								
T'do O.C. FIELD TIME CONST.				0.8								
Ta ARMATURE TIME CONST.				0.00	73 s							
SHORT CIRCUIT RATIO				1/)	٢d							

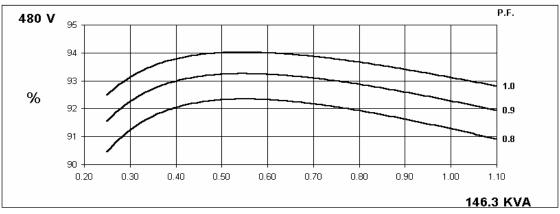
Winding 311

50 Hz

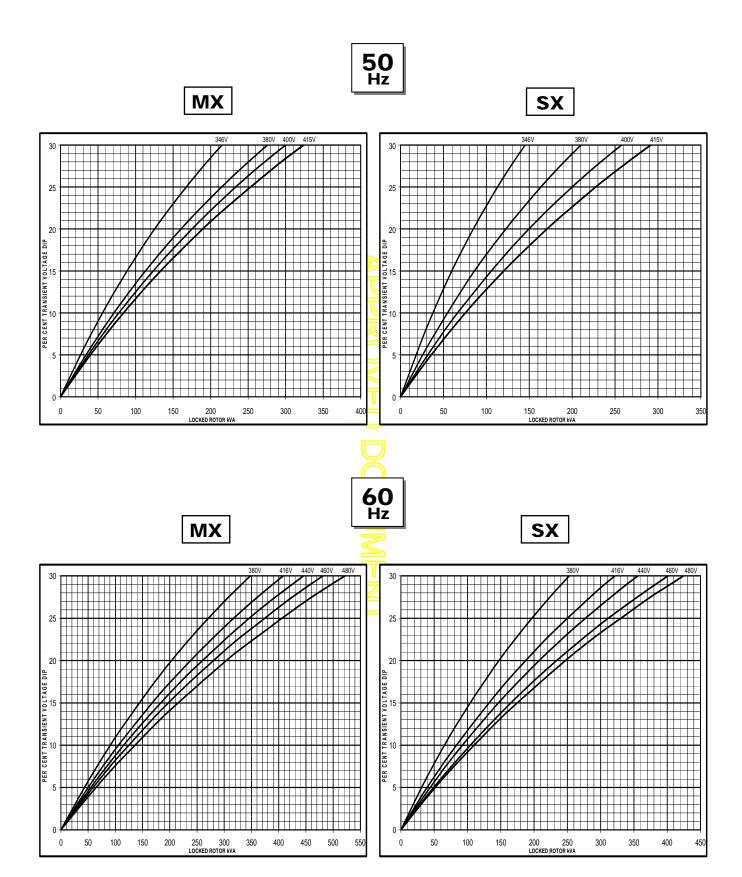

UCI274D

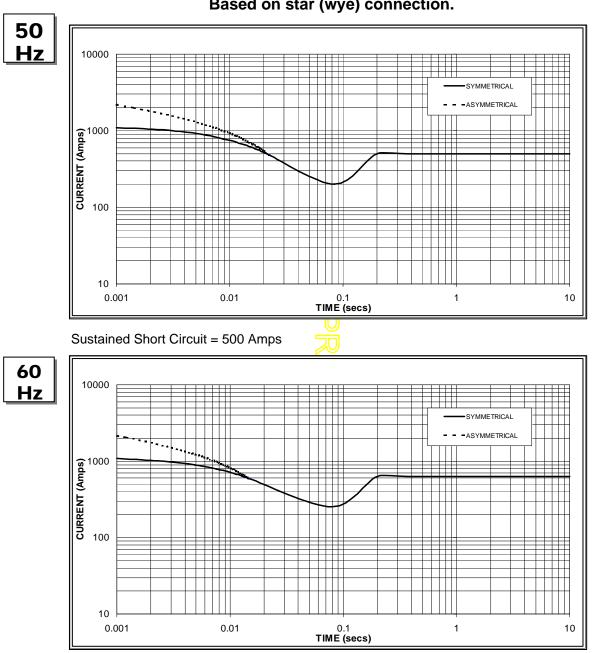

60


Hz


Winding 311

THREE PHASE EFFICIENCY CURVES




UCI274D

Winding 311

Locked Rotor Motor Starting Curve

UCI274D

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 630 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	X 1.00	416v	X 1.00			
400v	X 1.07	440v	X 1.06			
415v	X 1.12	460v	X 1.12			
		480v	X 1.17			
The quetaine	d ourront vol	ua ia aanatan	tirroopootivo			

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

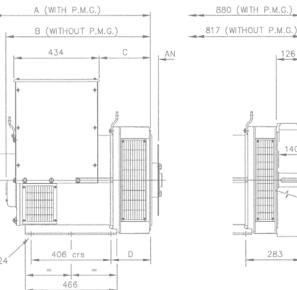
Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732

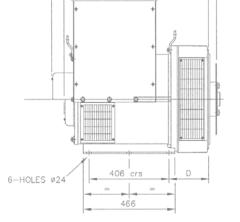
UCI274D

Winding 311 / 0.8 Power Factor

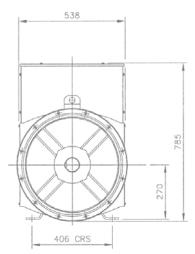
RATINGS

	Class - Temp Rise	Co	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	°°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	100.0	100.0	100.0	N/A	114.0	120.0	114.0	N/A	121.0	127.0	121.0	N/A	125.0	130.0	125.0	N/A
	kW	80.0	80.0	80.0	N/A	91.2	96.0	91.2	N/A	96.8	101.6	96.8	N/A	100.0	104.0	100.0	N/A
	Efficiency (%)	90.9	91.3	91.5	N/A	90.3	90.6	91.1	N/A	90.0	90.3	90.8	N/A	89.8	90.2	90.7	N/A
	kW Input	88.0	87.6	87.4	N/A	101.0	106.0	100.1	N/A	107.6	112.5	106.6	N/A	111.4	115.3	110.3	N/A
						_	1			-				_			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Devellet Star () ()	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	120.0	125.0	125.0	131.3	131.3	137.5	137.5	146.3	137.5	145.0	145.0	156.3	142.5	150.0	150.0	158.8
	kW	96.0	100.0	100.0	105.0	105.0	110.0	110.0	117.0	110.0	116.0	116.0	125.0	114.0	120.0	120.0	127.0
	Efficiency (%)	90.9	91.2	91.5	91.6	90.5	90. <mark>8</mark>	91.2	91.3	90.2	90.6	91.0	91.0	90.1	90.4	90.8	91.0
	kW Input	105.6	109.6	109.3	114.7	116.1	121.1	120.6	128.2	122.0	128.0	127.5	137.4	126.5	132.7	132.2	139.6
-							ĺ	J									


126


140

70,030 ø70,011


SHAFT EXTENSION

283

SIN	gle beari	NG ADAP	TORS		COUPLING D	ISCS
ADAPTOR	A	В	С	D	DISC	AN
SAE 1	813,3	750,3	274,3	216,3	SAE 10	53,98
SAE 2	799	736	260	202	SAE 11,5	39,68
SAE 3	799	736	260	202	SAE 14	25,40



www.cumminsgeneratortechnologies.com

Copyright 2021, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

UCI274E - Winding 311 Technical Data Sheet

UCI274E SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the definition main rotor, through a full wave bridge, protected by a surger suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This deexcites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

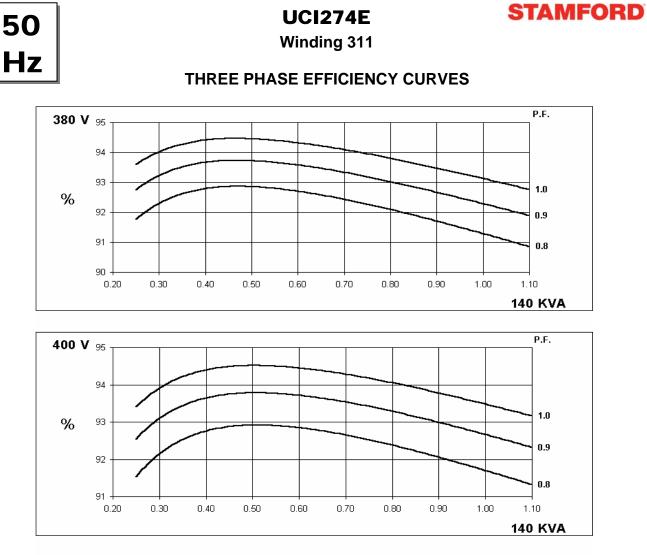
All values tabulated on page 8 are subject to the following reductions

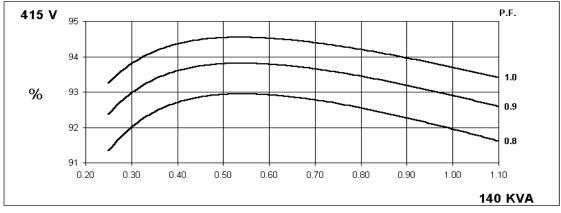
5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

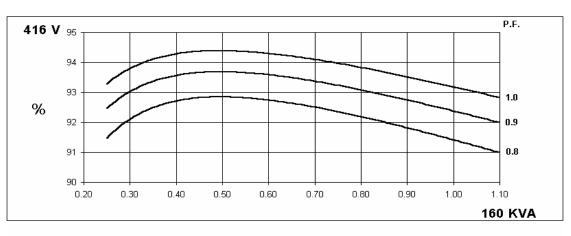
Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

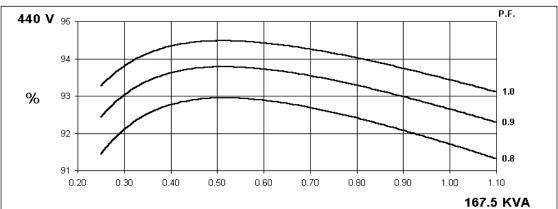

NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

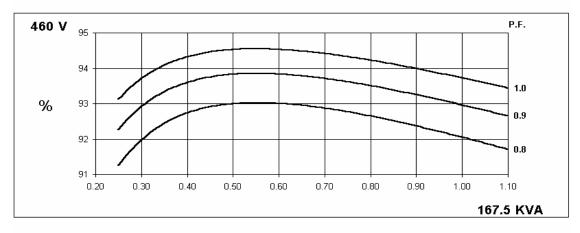

Front cover drawing typical of product range.

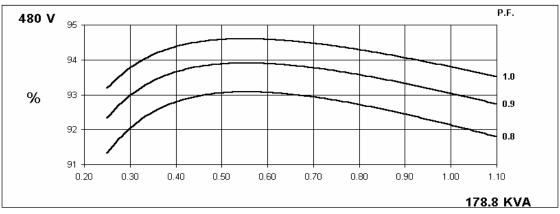
WINDING 311

_		VVIN	IDING 31	1								
CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.									
A.V.R.	MX321	MX341										
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	GINE GOVE	RNING							
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIR	CUIT DECRE	MENT CUR	VES (page 7)							
CONTROL SYSTEM	SELF EXCI											
A.V.R.	SX460	AS440										
	± 1.0 %	± 1.0 % ± 1.0 % With 4% ENGINE GOVERNING ERIES 4 CONTROL DOES NOT SUSTAIN A SHORT CIRCUIT CURRENT										
SUSTAINED SHORT CIRCUIT	SERIES 4 C	UNTROL DO	JES NOT SU	STAIN A SH		II CURRENI						
INSULATION SYSTEM		CLASS H										
PROTECTION		IP23										
RATED POWER FACTOR				0.	8							
STATOR WINDING			DOL	JBLE LAYER	CONCENT	RIC						
WINDING PITCH				TWO T	HIRDS							
WINDING LEADS				1:	2							
STATOR WDG. RESISTANCE		0.0317 (Ohms PER PI	HASE AT 22	°C SERIES	STAR CONN	ECTED					
ROTOR WDG. RESISTANCE				1.34 Ohm	s at 22°C							
EXCITER STATOR RESISTANCE				20 Ohms	at 22°C							
EXCITER ROTOR RESISTANCE			0.091	Ohms PER	PHASE AT 2	22°C						
R.F.I. SUPPRESSION	BS EN	61000-6-2 8	BS EN 6100	0-6-4,VDE 0	875G, VDE ()875N. refer t	to factory for	others				
WAVEFORM DISTORTION		NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0%										
MAXIMUM OVERSPEED			\leq	2250 R	ev/Min							
BEARING DRIVE END			Π	BALL. 6315-	-2RS (ISO)							
BEARING NON-DRIVE END				BALL. 6310-	-2RS (ISO)							
		1 BE/	ARING		, ,	2 BEA	RING					
WEIGHT COMP. GENERATOR		49	2 kg			511	kg					
WEIGHT WOUND STATOR		18	0 <mark>kg</mark>			180	kg					
WEIGHT WOUND ROTOR			51 kg			156.5	-					
WR ² INERTIA			1 kgm ²			1.2765	-					
SHIPPING WEIGHTS in a crate			5 kg			539	-					
PACKING CRATE SIZE			x 103(cm)			123 x 67 > 60	. ,					
TELEPHONE INTERFERENCE			<2%			TIF						
COOLING AIR			ec 1090 cfm			0.617 m ³ /se						
VOLTAGE SERIES STAR	380/220	400/231	41 <mark>5</mark> /240	440/254	416/240	440/254	460/266	480/277				
VOLTAGE PARALLEL STAR	190/110	200/115	20 <mark>8</mark> /120	220/127	208/120	220/127	230/133	240/138				
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138				
kVA BASE RATING FOR REACTANCE VALUES	140	140	140	N/A	160	167.5	167.5	178.8				
Xd DIR. AXIS SYNCHRONOUS	2.34	2.11	1.96	-	2.68	2.51	2.29	2.25				
X'd DIR. AXIS TRANSIENT	0.21	0.19	0.18	-	0.25	0.23	0.21	0.21				
X"d DIR. AXIS SUBTRANSIENT	0.14	0.13	0.12	-	0.17	0.16	0.15	0.14				
Xq QUAD. AXIS REACTANCE	1.53	1.38	1.28	-	1.74	1.63	1.49	1.46				
X"q QUAD. AXIS SUBTRANSIENT	0.18	0.16	0.15	-	0.22	0.21	0.19	0.18				
XL LEAKAGE REACTANCE	0.08	0.08	0.07	-	0.09	0.08	0.08	0.08				
X2 NEGATIVE SEQUENCE	0.16	0.14	0.13	-	0.19	0.18	0.16	0.16				
	0.10	0.09	0.08	-	0.11	0.10	0.09	0.09				
REACTANCES ARE SATURA T'd TRANSIENT TIME CONST.		V	ALUES ARE	PER UNIT A 0.03		ND VOLTAG	E INDICATE	ט				
T''d SUB-TRANSTIME CONST.				0.0								
T'do O.C. FIELD TIME CONST.				0.8								
Ta ARMATURE TIME CONST.				0.00			-					
SHORT CIRCUIT RATIO				1/>	٢d							

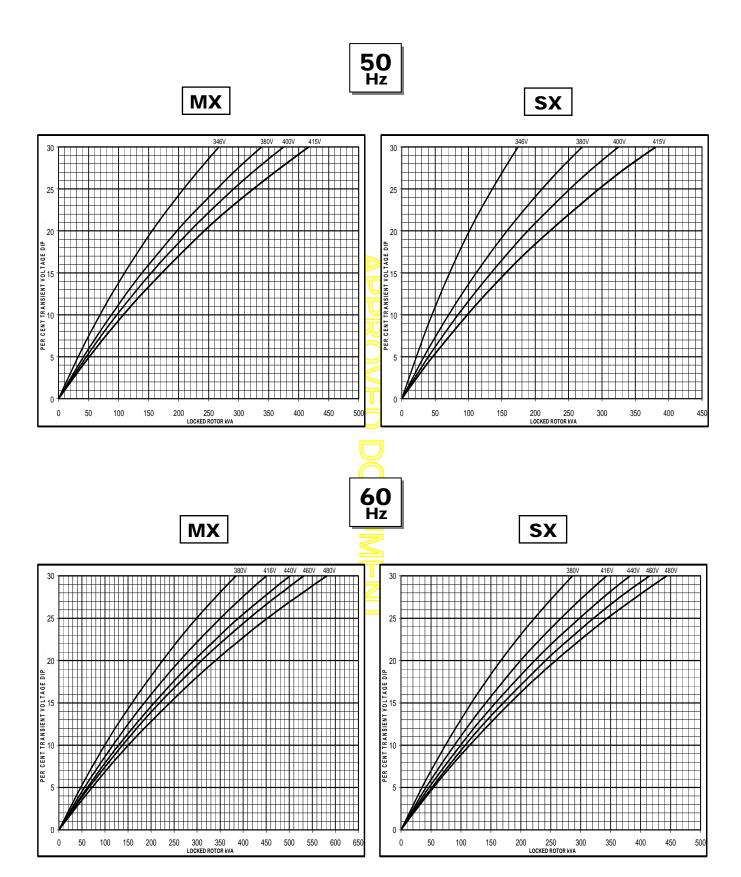


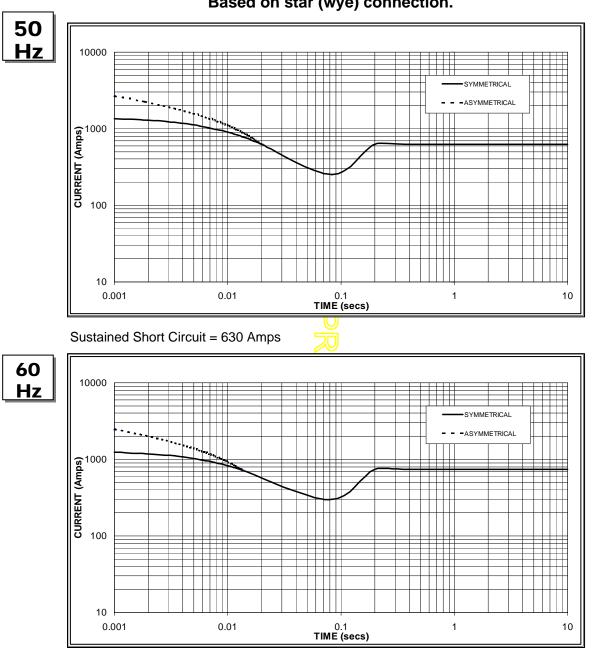

60


Hz


Winding 311

THREE PHASE EFFICIENCY CURVES





Winding 311

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 740 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	X 1.00	416v	X 1.00			
400v	X 1.07	440v	X 1.06			
415v	X 1.12	460v	X 1.12			
		480v	X 1.17			
The quetoine	d ourrent vol	ua ia aonatan	t irragaativa			

The sustained current value is constant irrespective of voltage level

Note 2

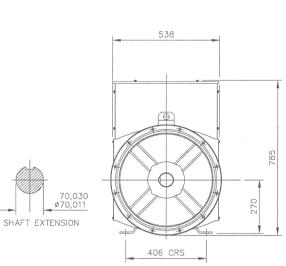
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

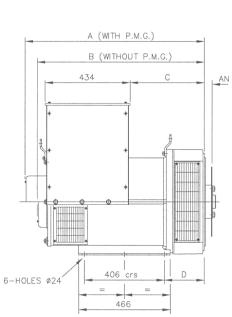

Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732

Winding 311 / 0.8 Power Factor

RATINGS

-																	
	Class - Temp Rise	Co	ont. F -	105/40°	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	′°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	125.0	125.0	125.0	N/A	140.0	140.0	140.0	N/A	145.0	145.0	145.0	N/A	150.0	150.0	150.0	N/A
	kW	100.0	100.0	100.0	N/A	112.0	112.0	112.0	N/A	116.0	116.0	116.0	N/A	120.0	120.0	120.0	N/A
	Efficiency (%)	91.7	92.1	92.3	N/A	91.3	91.7	92.0	N/A	91.1	91.6	91.8	N/A	91.0	91.4	91.7	N/A
	kW Input	109.1	108.6	108.3	N/A	122.7	122.1	121.7	N/A	127.3	126.6	126.4	N/A	131.9	131.3	130.9	N/A
		-				-				-				-			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Devellet Star () ()	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	140.0	143.8	143.8	160.0	160.0	167.5	167.5	178.8	170.0	175.0	175.0	187.5	175.0	181.3	181.3	193.8
	kW	112.0	115.0	115.0	128.0	128.0	134.0	134.0	143.0	136.0	140.0	140.0	150.0	140.0	145.0	145.0	155.0
	Efficiency (%)	91.9	92.2	92.5	92.5	91.4	91.7	92.1	92.1	91.2	91.5	91.9	92.0	91.0	91.4	91.8	91.9
	kW Input	121.9	124.8	124.4	138.4	140.0	146.1	145.5	155.3	149.1	153.0	152.3	163.0	153.8	158.7	158.0	168.7
]									

126


140

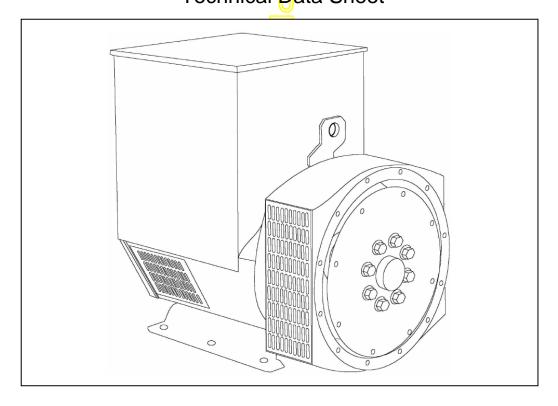
995 (WITH P.M.G.)

283

Ξ

932 (WITHOUT P.M.G.)

SIN	GLE BEAR	ING ADAF	TORS		COUPLING	DISCS
ADAPTOR	A	В	С	D	DISC	AN
SAE 1	928,3	865,3	389,3	216,3	SAE 10	53,98
SAE 2	914	851	375	202	SAE 11,5	39,68
SAE 3	914	851	375	202	SAE 14	25,40


Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

UCI274F - Winding 311 Technical Data Sheet

UCI274F SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This deexcites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

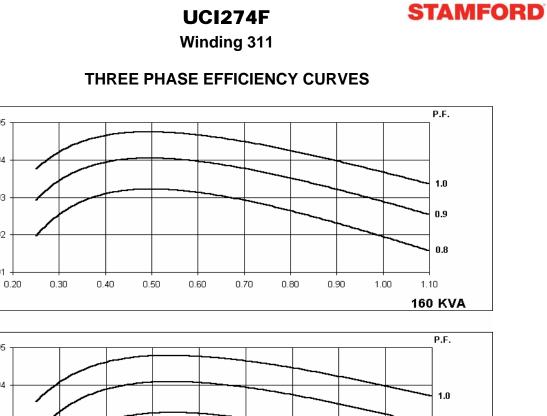
5% when air inlet filters are fitted.

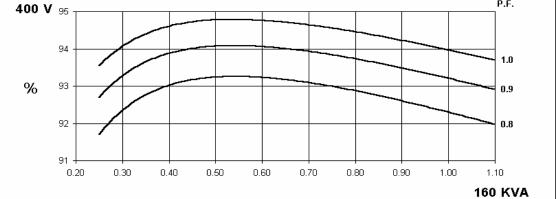
3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

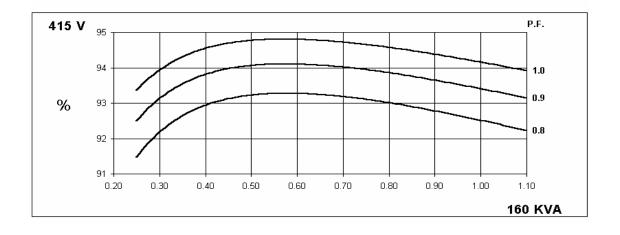
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.


Front cover drawing typical of product range.


UCI274F

WINDING 311

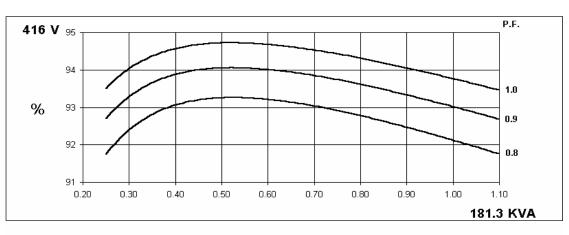
_		VVIN	IDING 31	1							
CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.								
A.V.R.	MX321	MX341									
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	GINE GOVE	RNING						
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIR	CUIT DECRE	MENT CUR	/ES (page 7)						
CONTROL SYSTEM	SELF EXCI										
A.V.R.	SX460	AS440									
	± 1.0 %	± 1.0 % ± 1.0 % With 4% ENGINE GOVERNING ERIES 4 CONTROL DOES NOT SUSTAIN A SHORT CIRCUIT CURRENT									
SUSTAINED SHORT CIRCUIT	SERIES 4 C	UNTROL DO	JES NOT SU	STAIN A SH		I CURRENI					
INSULATION SYSTEM		CLASS H									
PROTECTION		IP23									
RATED POWER FACTOR				0.	8						
STATOR WINDING			DOL	JBLE LAYER	CONCENT	RIC					
WINDING PITCH				TWO T	HIRDS						
WINDING LEADS				1:	2						
STATOR WDG. RESISTANCE		0.024 C	hms PER PH	IASE AT 22°	C SERIES S	TAR CONNE	ECTED				
ROTOR WDG. RESISTANCE				1.52 Ohm	s at 22°C						
EXCITER STATOR RESISTANCE				20 Ohms	at 22°C						
EXCITER ROTOR RESISTANCE			0.091	Ohms PER	PHASE AT 2	2°C					
R.F.I. SUPPRESSION	BS EN	61000-6-2 8	BS EN 6100	0-6-4,VDE 0	875G, VDE (875N. refer t	o factory for	others			
WAVEFORM DISTORTION		NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0%									
MAXIMUM OVERSPEED			\leq	2250 R	ev/Min						
BEARING DRIVE END			Π	BALL. 6315-	2RS (ISO)						
BEARING NON-DRIVE END				BALL. 6310-	2RS (ISO)						
		1 BE/	ARING		()	2 BEA	RING				
WEIGHT COMP. GENERATOR		53	0 kg			545	kg				
WEIGHT WOUND STATOR		20	0 <mark>kg</mark>			200	kg				
WEIGHT WOUND ROTOR			67 kg			177.7	-				
WR ² INERTIA			5 kgm ²			1.5044	-				
SHIPPING WEIGHTS in a crate			3 kg			577					
PACKING CRATE SIZE			x 103(cm)			123 x 67 x 60	. ,				
TELEPHONE INTERFERENCE			<2%			TIF					
COOLING AIR			ec 1090 cfm			0.617 m ³ /sec					
VOLTAGE SERIES STAR	380/220	400/231	41 <mark>5</mark> /240	440/254	416/240	440/254	460/266	480/277			
VOLTAGE PARALLEL STAR	190/110	200/115	20 <mark>8</mark> /120	220/127	208/120	220/127	230/133	240/138			
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138			
kVA BASE RATING FOR REACTANCE VALUES	160	160	160	N/A	181.3	190	190	206.3			
Xd DIR. AXIS SYNCHRONOUS	2.24	2.02	1.88	-	2.53	2.37	2.17	2.16			
X'd DIR. AXIS TRANSIENT	0.19	0.17	0.16	-	0.21	0.20	0.18	0.18			
X"d DIR. AXIS SUBTRANSIENT	0.13	0.12	0.11	-	0.14	0.13	0.12	0.12			
Xq QUAD. AXIS REACTANCE	1.38	1.25	1.16	-	1.53	1.43	1.31	1.31			
X"q QUAD. AXIS SUBTRANSIENT	0.17	0.15	0.14	-	0.20	0.19	0.17	0.17			
XL LEAKAGE REACTANCE	0.07	0.06	0.06	-	0.09	0.08	0.08	0.08			
X2 NEGATIVE SEQUENCE	0.14	0.13	0.12	-	0.16	0.15	0.14	0.14			
	0.08	0.08	0.07	-	0.10	0.09	0.09	0.09			
REACTANCES ARE SATURA T'd TRANSIENT TIME CONST.		V	ALUES ARE	PER UNIT A 0.03		VULTAG	E INDICATE	ט			
T''d SUB-TRANSTIME CONST.				0.00							
T'do O.C. FIELD TIME CONST.				0.9							
Ta ARMATURE TIME CONST.				0.00		-					
SHORT CIRCUIT RATIO				1/>	٢d						

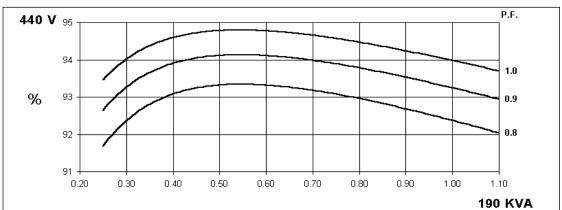


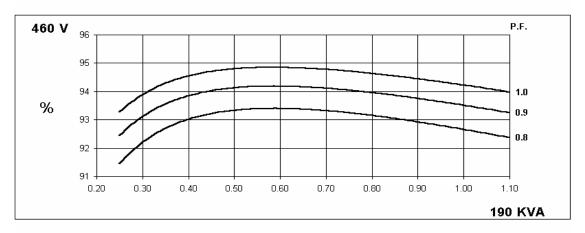
Hz

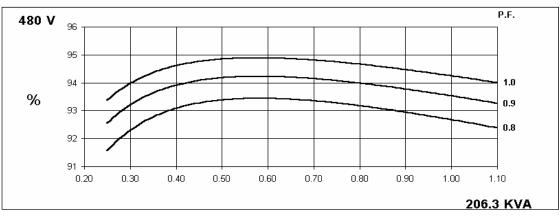
380 V 95

%

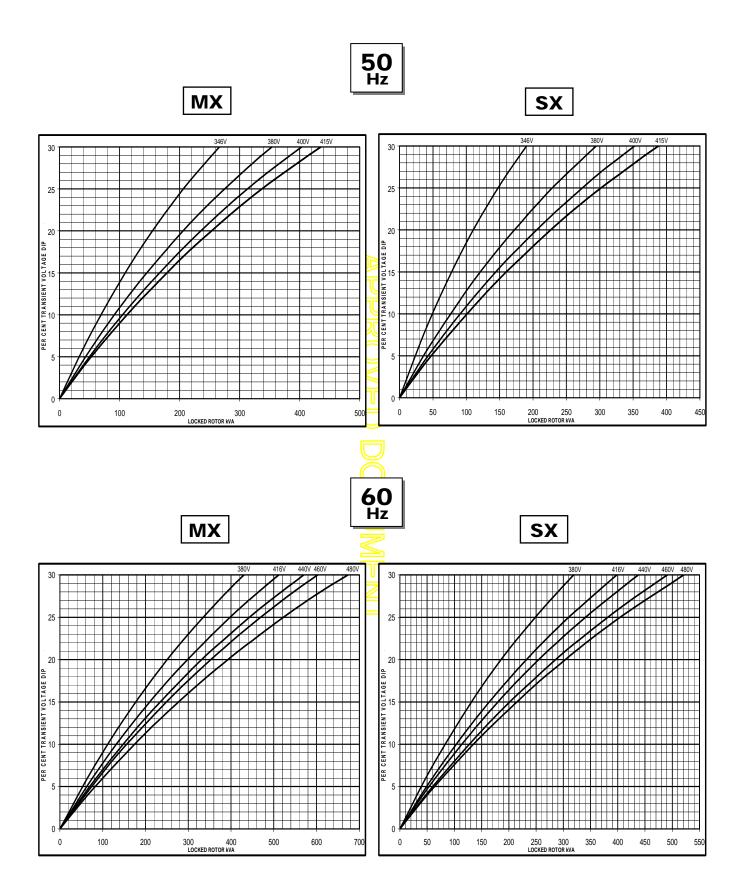


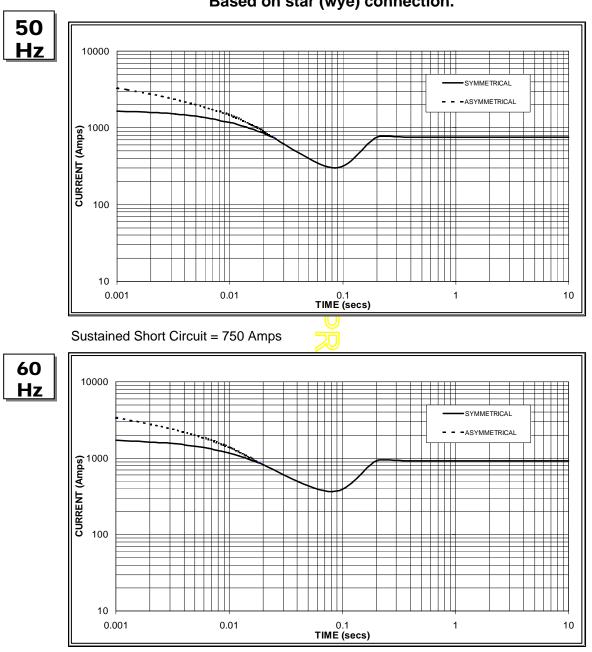



UCI274F


Winding 311

THREE PHASE EFFICIENCY CURVES





UCI274F

Winding 311

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 920 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	X 1.00	416v	X 1.00			
400v	X 1.07	440v	X 1.06			
415v	460v	X 1.12				
		480v	X 1.17			
The queteine	d ourropt vol					

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

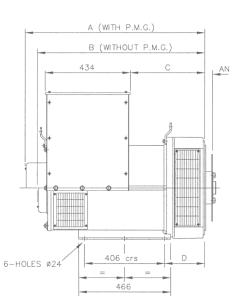
Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732

UCI274F

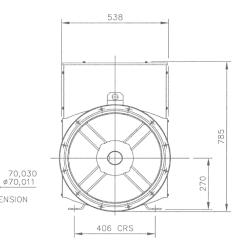
Winding 311 / 0.8 Power Factor

RATINGS

-																	
	Class - Temp Rise	Co	Cont. F - 105/40°C				ont. H -	125/40	°C	Standby - 150/40°C				Standby - 163/27°C			
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	145.0	145.0	145.0	N/A	160.0	160.0	160.0	N/A	170.0	170.0	170.0	N/A	175.0	175.0	175.0	N/A
	kW	116.0	116.0	116.0	N/A	128.0	128.0	128.0	N/A	136.0	136.0	136.0	N/A	140.0	140.0	140.0	N/A
	Efficiency (%)	92.3	92.6	92.8	N/A	92.0	92.3	92.5	N/A	91.7	92.1	92.3	N/A	91.6	92.0	92.2	N/A
	kW Input	125.7	125.3	125.0	N/A	139.1	138.7	138.4	N/A	148.3	147.7	147.3	N/A	152.8	152.2	151.8	N/A
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	162.5	172.5	172.5	187.5	181.3	190.0	190.0	206.3	187.5	200.0	200.0	212.5	192.5	206.3	206.3	218.8
	kW	130.0	138.0	138.0	150.0	145.0	152.0	152.0	165.0	150.0	160.0	160.0	170.0	154.0	165.0	165.0	175.0
	Efficiency (%)	92.5	92.7	92.9	92.9	92.1	92. <mark>4</mark>	92.7	92.7	92.0	92.2	92.5	92.6	91.9	92.1	92.4	92.5
	kW Input	140.5	148.9	148.5	161.5	157.5	164.5	/ 164.0	178.0	163.0	173.5	173.0	183.6	167.6	179.2	178.6	189.2
								J									


126

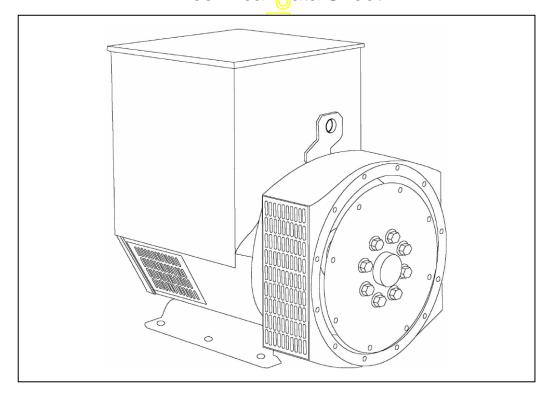
140


283

SHAFT EXTENSION

995 (WITH P.M.G.) 932 (WITHOUT P.M.G.)

SIN	GLE BEAR	COUPLING	DISCS			
ADAPTOR	A	В	С	D	DISC	AN
SAE 1	928,3	865,3	389,3	216,3	SAE 10	53,98
SAE 2	914	851	375	202	SAE 11,5	39,68
SAE 3	914	851	375	202	SAE 14	25,40


Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

UCI274G - Winding 311 Technica

UCI274G SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the demain rotor, through a full wave bridge, protected by a surger suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This deexcites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

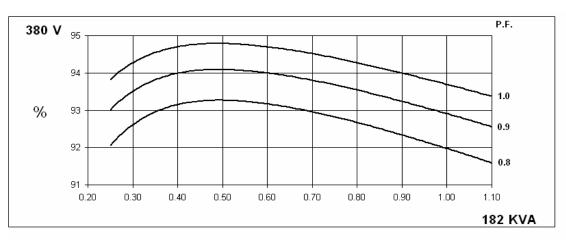
3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

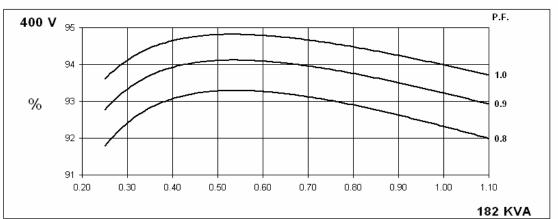
3% for every 5°C by which the operational ambient temperature exceeds 40°C.

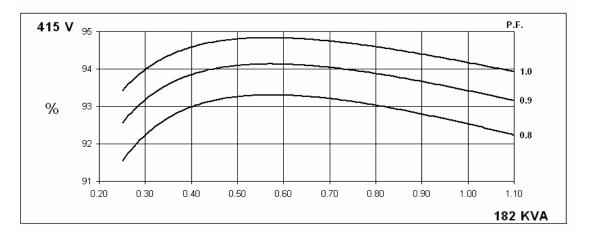
Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

Front cover drawing typical of product range.

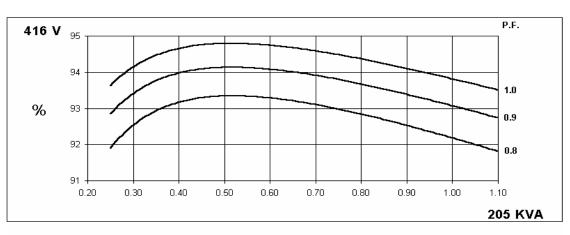

WINDING 311

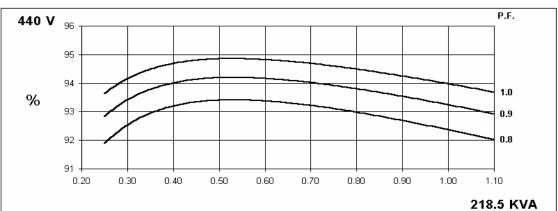

_		VVID	IDING 31	1									
CONTROL SYSTEM	SEPARATE	LY EXCITED	DBY P.M.G.										
A.V.R.	MX321	MX341											
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	GINE GOVE	RNING								
SUSTAINED SHORT CIRCUIT		REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)											
	REFERTO												
CONTROL SYSTEM	SELF EXCIT	TED											
A.V.R.	SX460	SX460 AS440											
VOLTAGE REGULATION	± 1.0 %												
SUSTAINED SHORT CIRCUIT	SERIES 4 C	SERIES 4 CONTROL DOES NOT SUSTAIN A SHORT CIRCUIT CURRENT											
INSULATION SYSTEM				CLAS	SS H								
PROTECTION				IP	23								
RATED POWER FACTOR				0.	8								
STATOR WINDING			DOL	JBLE LAYER		RIC							
WINDING PITCH				TWO T									
WINDING LEADS				11001	-								
		0.0100			_								
STATOR WDG. RESISTANCE		0.01990	Ohms PER PI			STAR CONN	ECTED						
ROTOR WDG. RESISTANCE				1.69 Ohm:									
EXCITER STATOR RESISTANCE				20 Ohms	at 22°C								
EXCITER ROTOR RESISTANCE			0.091	Ohms PER	PHASE AT 2	22°C							
R.F.I. SUPPRESSION	BS EN	61000-6-2 8	& <mark>BS E</mark> N 6100	0-6-4,VDE 0	875G, VDE 0	875N. refer t	o factory for	others					
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-	DISTORTING	G BALANCE	D LINEAR LC	DAD < 5.0%						
MAXIMUM OVERSPEED	2250 Rev/Min												
BEARING DRIVE END			Π	BALL. 6315	-2RS (ISO)								
BEARING NON-DRIVE END				BALL. 6310	-2RS (ISO)								
		1 BE/	ARING		,	2 BEA	RING						
WEIGHT COMP. GENERATOR		58	0 kg			598	kg						
WEIGHT WOUND STATOR			5 kg			225	kg						
WEIGHT WOUND ROTOR		210.	.35 kg			199.3	9 kg						
WR ² INERTIA		1.767	4 kgm ²			1.7169	kgm ²						
SHIPPING WEIGHTS in a crate		61	3 <mark>kg</mark>			630	kg						
PACKING CRATE SIZE		123 x 67	x <mark>103 (</mark> cm)			123 x 67 x	103 (cm)						
) Hz			60							
TELEPHONE INTERFERENCE			-< <mark>2%</mark>			TIF							
			ec 1090 cfm			0.617 m ³ /se							
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277					
VOLTAGE PARALLEL STAR VOLTAGE SERIES DELTA	190/110	200/115	208/120	220/127	208/120 240/120	220/127	230/133	240/138 277/138					
kVA BASE RATING FOR REACTANCE	220/110	230/115	240/120	254/127		254/127	266/133						
VALUES	182	182	182	N/A	205	218	218	231					
Xd DIR. AXIS SYNCHRONOUS	2.15	1.94	1.80	-	2.43	2.31	2.11	2.06					
X'd DIR. AXIS TRANSIENT	0.19	0.17	0.16	-	0.21	0.20	0.18	0.18					
X"d DIR. AXIS SUBTRANSIENT	0.13	0.12	0.11	-	0.15	0.14	0.13	0.12					
Xq QUAD. AXIS REACTANCE	1.29	1.16	1.08	I	1.47	1.40	1.28	1.24					
X"q QUAD. AXIS SUBTRANSIENT	0.18	0.16	0.15	-	0.18	0.17	0.16	0.15					
XL LEAKAGE REACTANCE	0.08	0.07	0.07	-	0.09	0.08	0.08	0.07					
X2 NEGATIVE SEQUENCE	0.13	0.12	0.11	-	0.16	0.15	0.13	0.13					
X0ZERO SEQUENCE	0.08	0.07	0.07	-	0.10	0.09	0.08	0.08					
REACTANCES ARE SATURAT	ſED	V	ALUES ARE			ND VOLTAG	E INDICATE	D					
T'd TRANSIENT TIME CONST.				0.03									
				0.01									
T'do O.C. FIELD TIME CONST. Ta ARMATURE TIME CONST.				1 0.0									
SHORT CIRCUIT RATIO				0.0 1/2									
	1			177									

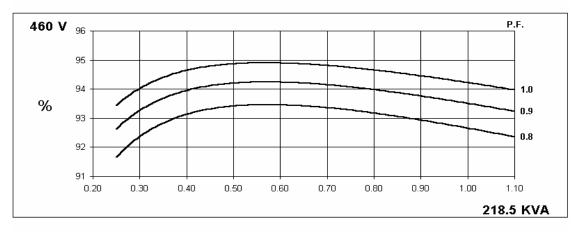


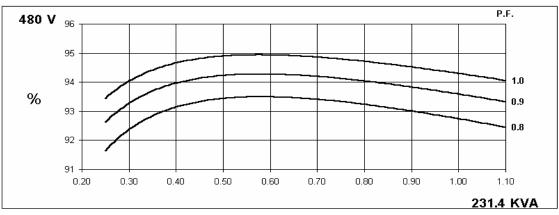
Winding 311

THREE PHASE EFFICIENCY CURVES

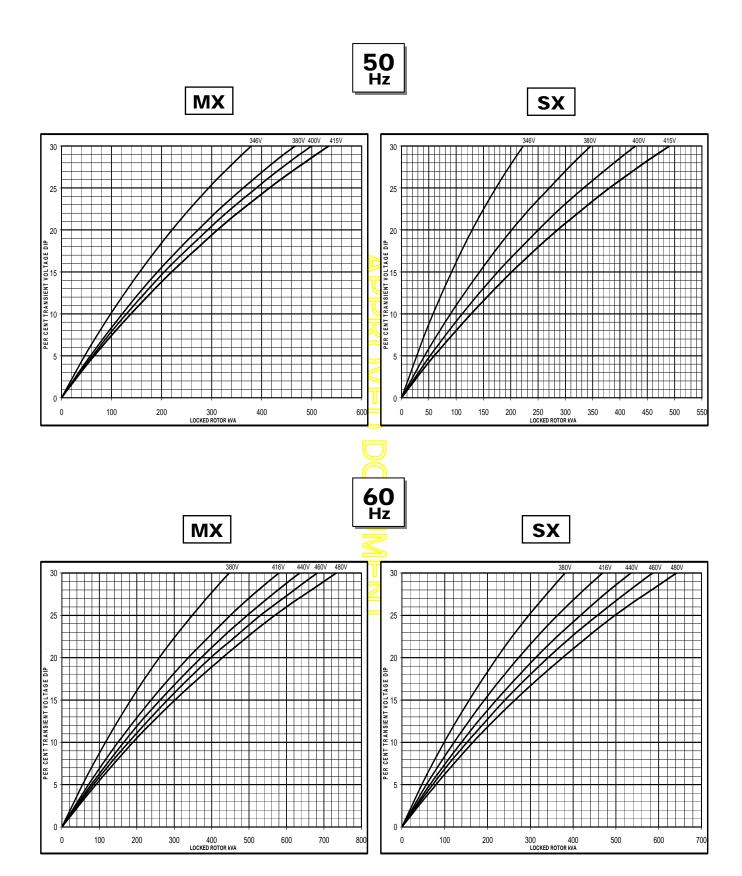


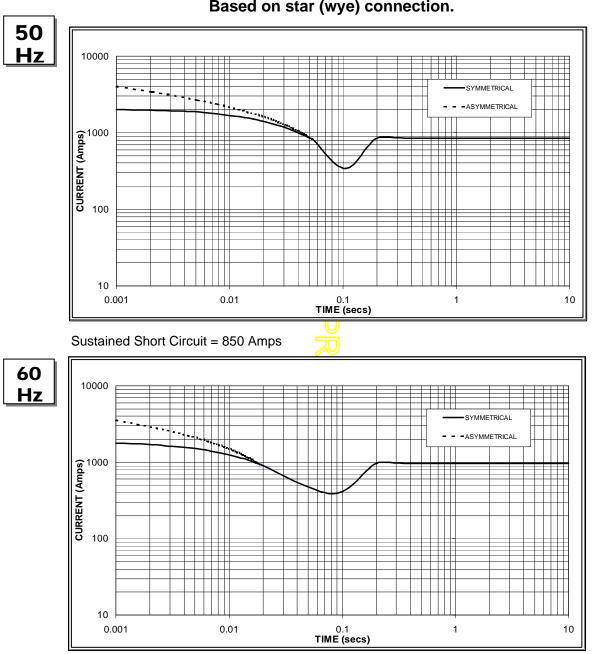

60


Hz


Winding 311

THREE PHASE EFFICIENCY CURVES





Winding 311

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 970 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz						
Voltage	Factor	Voltage	Factor					
380v	X 1.00	416v	X 1.00					
400v	X 1.07	440v	X 1.06					
415v	X 1.12	460v	X 1.12					
		480v	X 1.17					
The quetaine	d ourront vol	ua ia aanatan	tirraganastiva					

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

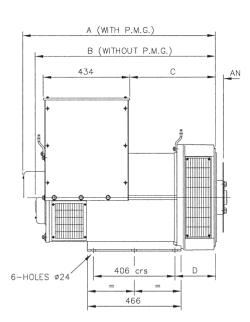
Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732

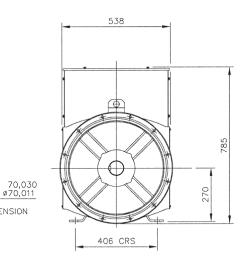
Winding 311 / 0.8 Power Factor

RATINGS

											T							
	Class - Temp Rise	emp Rise Cont. F - 105/40°C			Cont. H - 125/40°C				Standby - 150/40°C				Standby - 163/27°C					
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440	
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220	
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254	
	kVA	164.6	164.6	164.6	N/A	182.0	182.0	182.0	N/A	187.0	187.0	187.0	N/A	200.0	200.0	200.0	N/A	
	kW	131.7	131.7	131.7	N/A	145.6	145.6	145.6	N/A	149.6	149.6	149.6	N/A	160.0	160.0	160.0	N/A	
	Efficiency (%)	92.3	92.6	92.8	N/A	92.0	92.3	92.5	N/A	91.9	92.2	92.5	N/A	91.6	92.0	92.2	N/A	
	kW Input	142.7	142.2	141.9	N/A	158.3	157.7	157.4	N/A	162.8	162.2	161.8	N/A	174.7	173.9	173.5	N/A	
		-				-				-				-				
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480	
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240	
	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277	
	kVA	192.8	199.0	199.0	212.2	205.0	218.5	218.5	231.4	213.0	228.8	228.8	250.0	218.5	234.0	234.0	253.3	
	kW	154.2	159.2	159.2	169.8	164.0	174.8	174.8	185.1	170.4	183.0	183.0	200.0	174.8	187.2	187.2	202.6	
	Efficiency (%)	92.4	92.7	92.9	93.0	92.2	92. <mark>4</mark>	92.7	92.7	92.0	92.2	92.5	92.5	91.9	92.1	92.4	92.5	
	kW Input	166.9	171.7	171.4	182.5	177.9	189.2	188.6	199.7	185.2	198.5	197.9	216.2	190.2	203.3	202.6	219.1	
								J										


126

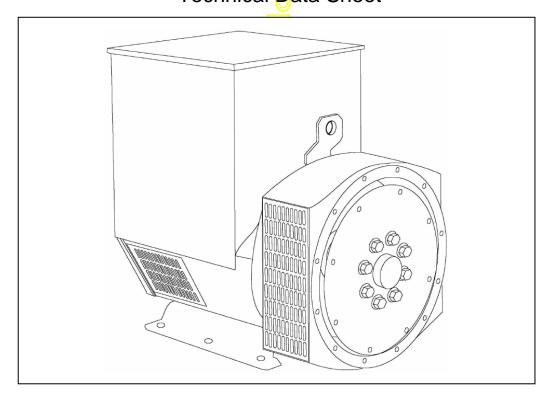
140


283

SHAFT EXTENSION

1045 (WITH P.M.G.) 982 (WITHOUT P.M.G.

SING	LE BEARI	COUPLING DIS	SCS			
ADAPTOR	A	В	С	D	DISC	AN
SAE 1	978,3	915,3	439,3	216,3	SAE 10	53,98
SAE 2	964	901	425	202	SAE 11,5	39,68
SAE 3	964	901	425	202	SAE 14	25,40


Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

UCI274H - Winding 311 Technica

UCI274H SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This deexcites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

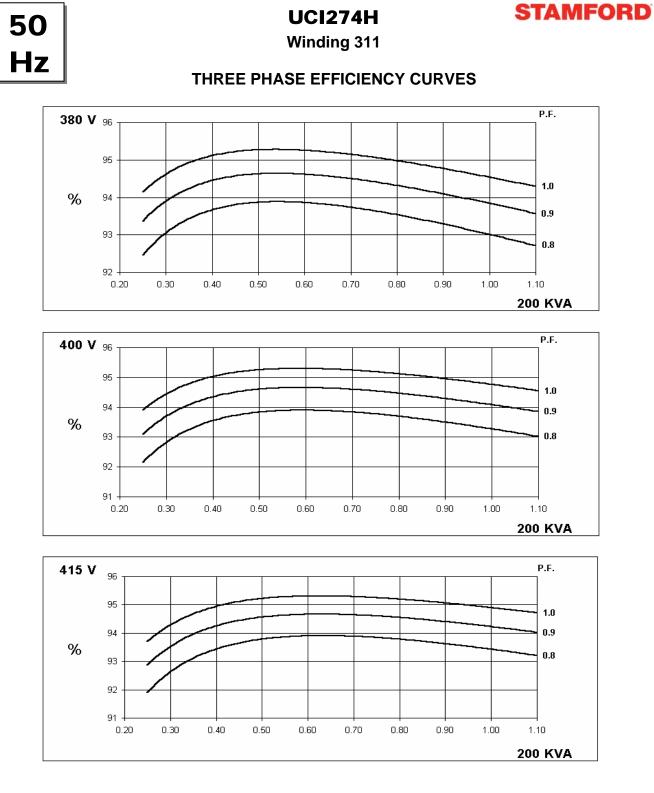
5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

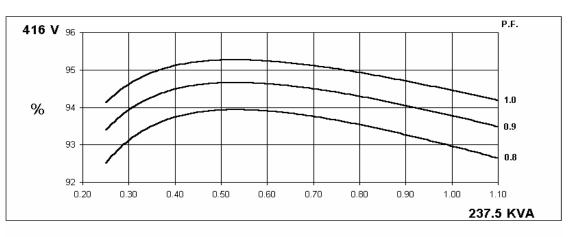
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

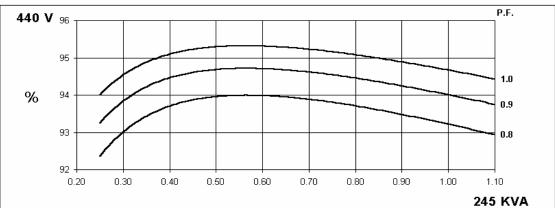

Front cover drawing typical of product range.

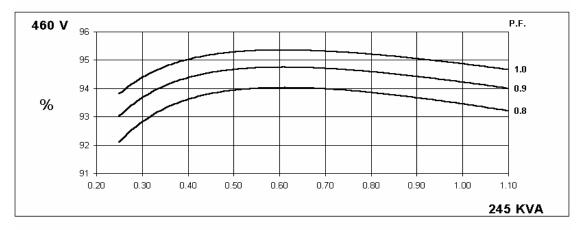
UCI274H

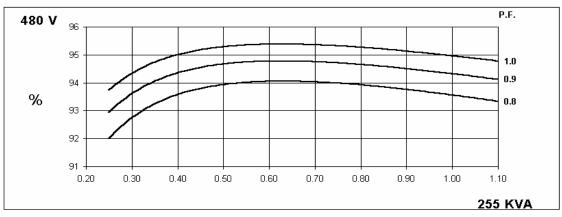
WINDING 311

		VVIP	IDING 31	1									
CONTROL SYSTEM	SEPARATE	LY EXCITED	DBY P.M.G.										
A.V.R.	MX321	MX341											
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	GINE GOVE	RNING								
SUSTAINED SHORT CIRCUIT	REFER TO	REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)											
CONTROL SYSTEM	SELF EXCI												
A.V.R.	SX460												
		AS440											
		± 1.0 % ± 1.0 % With 4% ENGINE GOVERNING SERIES 4 CONTROL DOES NOT SUSTAIN A SHORT CIRCUIT CURRENT											
SUSTAINED SHORT CIRCUIT	SERIES 4 C	UNTROL D	JES NOT SU	STAIN A SH		I CURRENI							
INSULATION SYSTEM				CLAS	SS H								
PROTECTION				IP:	23								
RATED POWER FACTOR				0.	8								
STATOR WINDING			DOL	JBLE LAYEF	CONCENT	RIC							
WINDING PITCH				TWO T	HIRDS								
WINDING LEADS				1	2								
STATOR WDG. RESISTANCE		0.0155	Ohms PER PI	HASE AT 22	°C SERIES	STAR CONN	ECTED						
ROTOR WDG. RESISTANCE				1.82 Ohm	s at 22°C								
EXCITER STATOR RESISTANCE				20 Ohms	at 22°C								
EXCITER ROTOR RESISTANCE			0.091	Ohms PER	PHASE AT 2	22°C							
R.F.I. SUPPRESSION	BS EN	61000-6-2 8	BS EN 6100	0-6-4,VDE 0	875G, VDE ()875N. refer t	o factory for	others					
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-	DISTORTING	G BALANCE	D LINEAR LC	AD < 5.0%						
MAXIMUM OVERSPEED			\leq	2250 R	ev/Min								
BEARING DRIVE END				BALL. 6315	-2RS (ISO)								
BEARING NON-DRIVE END				BALL. 6310	()								
		1 BE				2 BEA	RING						
WEIGHT COMP. GENERATOR			6 kg			641	-						
WEIGHT WOUND STATOR			3 k g			253	kg						
WEIGHT WOUND ROTOR		227	.53 kg			216.5	57 kg						
WR ² INERTIA			9 kgm²			1.8843	-						
SHIPPING WEIGHTS in a crate			9 <mark>kg</mark>			673							
PACKING CRATE SIZE			x 103 (cm)			123 x 67 x	, ,						
TELEPHONE INTERFERENCE) Hz =< <mark>2% </mark>			60 TIF<							
COOLING AIR			- <u>२</u> २ / ec - 1090 cfm			0.617 m³/sec							
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277					
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138					
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138					
kVA BASE RATING FOR REACTANCE VALUES	200	200	200	N/A	237.5	245	245	255					
Xd DIR. AXIS SYNCHRONOUS	2.11	1.91	1.77	-	2.50	2.31	2.11	2.02					
X'd DIR. AXIS TRANSIENT	0.18	0.16	0.15	-	0.21	0.19	0.18	0.17					
X"d DIR. AXIS SUBTRANSIENT	0.12	0.11	0.10	-	0.14	0.13	0.12	0.11					
Xq QUAD. AXIS REACTANCE	1.28	1.15	1.07	-	1.53	1.41	1.29	1.23					
X"q QUAD. AXIS SUBTRANSIENT	0.17	0.15	0.14	-	0.20	0.18	0.17	0.16					
X∟LEAKAGE REACTANCE	0.08	0.08	0.07	-	0.10	0.09	0.08	0.08					
X2 NEGATIVE SEQUENCE	0.13	0.12	0.11	-	0.16	0.15	0.13	0.13					
X0ZERO SEQUENCE	0.08	0.08	0.07	-	0.10	0.09	0.08	0.08					
REACTANCES ARE SATURA	TED	V	ALUES ARE	<u>PER UNIT A</u> 0.04		ND VOLTAG	E INDICATE	D					
T'd TRANSIENT TIME CONST. T"d SUB-TRANSTIME CONST.				0.04									
T'do O.C. FIELD TIME CONST.				1.1									
Ta ARMATURE TIME CONST.				0.01	2 s								
SHORT CIRCUIT RATIO				1/)	٢d								

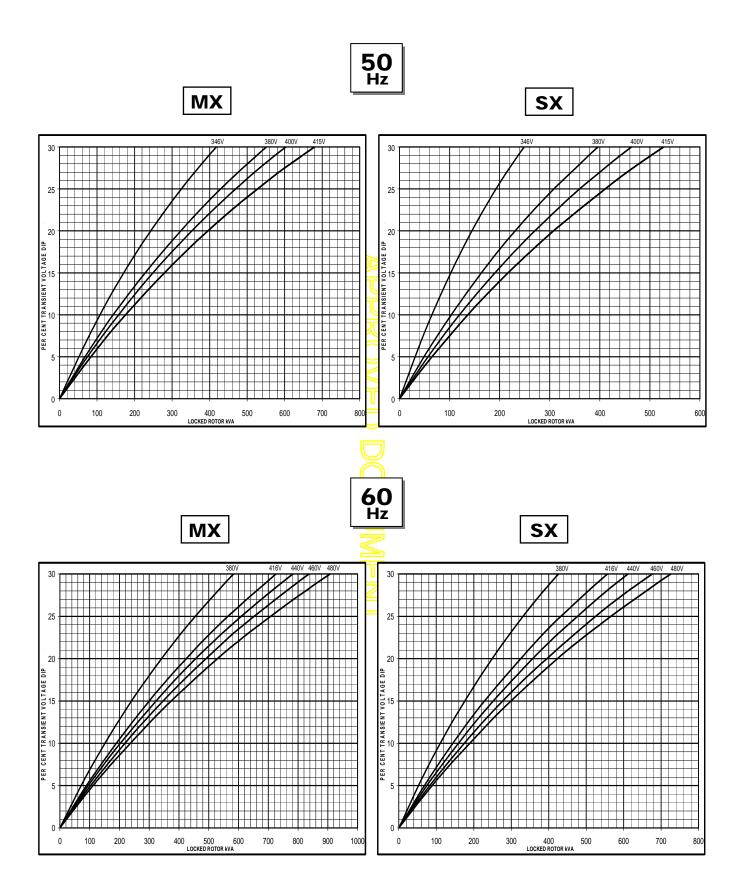

UCI274H

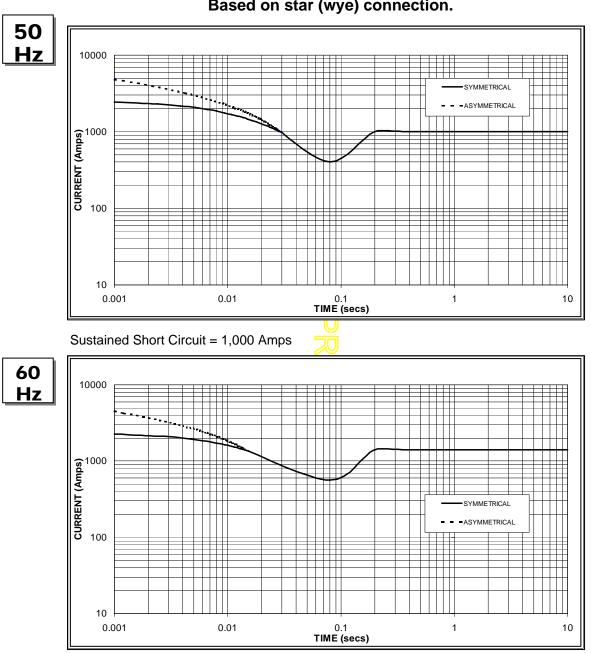

60


Hz


Winding 311

THREE PHASE EFFICIENCY CURVES




UCI274H

Winding 311

Locked Rotor Motor Starting Curve

UCI274H

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 1,400 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz					
Voltage	Factor	Voltage	Factor				
380v	X 1.00	416v	X 1.00				
400v	X 1.07	440v	X 1.06				
415v	X 1.12	460v	X 1.12				
			X 1.17				
The eveteine	d ourront vol	ua ia aanatan	tirroopootivo				

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

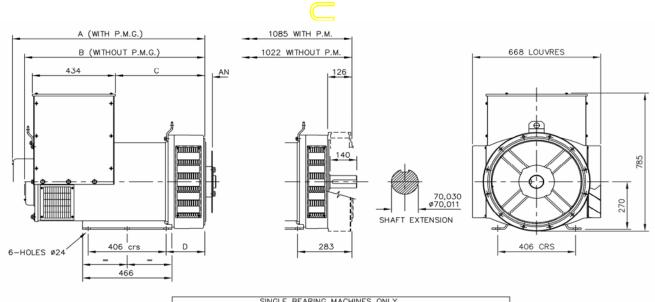
All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732

UCI274H

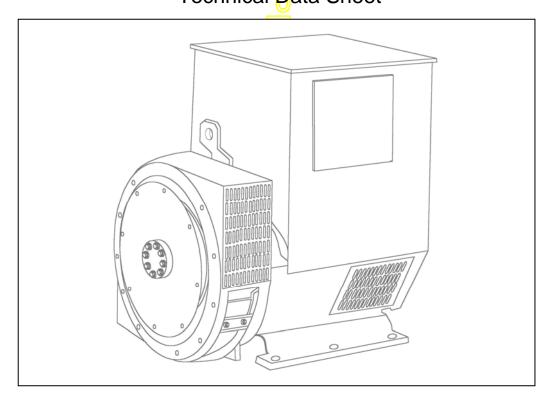


Winding 311 / 0.8 Power Factor

RATINGS

	Class - Temp Rise	Co	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	°°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	182.0	182.0	182.0	N/A	200.0	200.0	200.0	N/A	212.0	212.0	212.0	N/A	220.0	220.0	220.0	N/A
	kW	145.6	145.6	145.6	N/A	160.0	160.0	160.0	N/A	169.6	169.6	169.6	N/A	176.0	176.0	176.0	N/A
	Efficiency (%)	93.3	93.5	93.6	N/A	93.0	93.3	93.4	N/A	92.8	93.1	93.3	N/A	92.7	93.0	93.2	N/A
	kW Input	156.1	155.7	155.6	N/A	172.0	171.5	171.3	N/A	182.8	182.2	181.8	N/A	189.9	189.2	188.8	N/A
		-					7			-				_			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	218.8	225.0	225.0	235.0	237.5	245.0	245.0	255.0	250.0	258.8	258.8	275.0	256.3	265.0	265.0	280.0
	kW	175.0	180.0	180.0	188.0	190.0	196.0	196.0	204.0	200.0	207.0	207.0	220.0	205.0	212.0	212.0	224.0
	Efficiency (%)	93.2	93.4	93.6	93.7	93.0	93.2	93.5	93.6	92.8	93.1	93.3	93.4	92.7	93.0	93.3	93.3
	kW Input	187.8	192.7	192.3	200.6	204.3	210.3	209.6	217.9	215.5	222.4	221.9	235.5	221.2	228.0	227.2	240.1

l	SINGLE BEARING MACHINES ONLY											
[ADAPTOR	A	В	С	D	COUPLING DISCS	AN					
[SAE 1	1018,3	955,3	479,3	216,3	SAE 10	53,98					
- [SAE 2	1004	941	465	202	SAE 11,5	39,68					
[SAE 3	1004	941	465	202	SAE 14	25,40					


Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

UCDI274J - Winding 311 Technical Data Sheet

UCDI274J SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This deexcites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

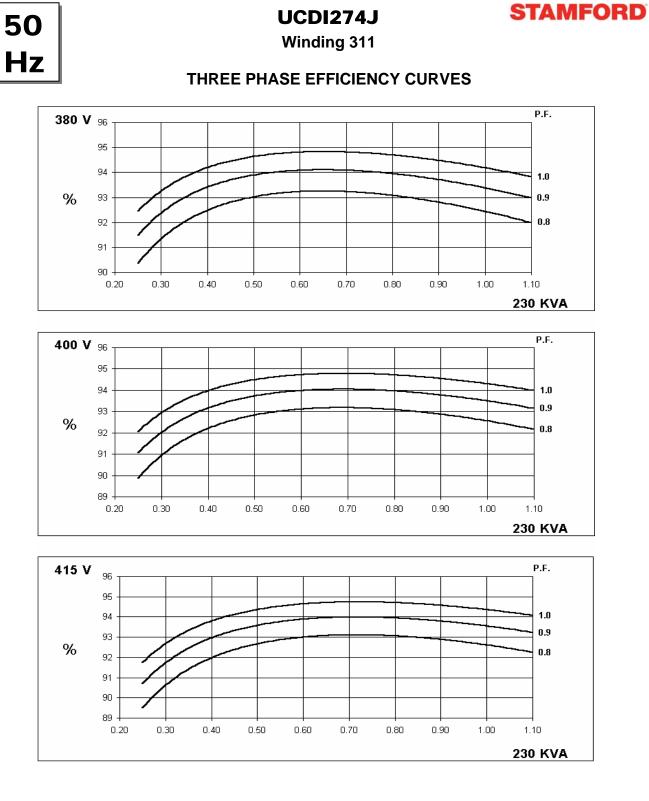
5% when air inlet filters are fitted.

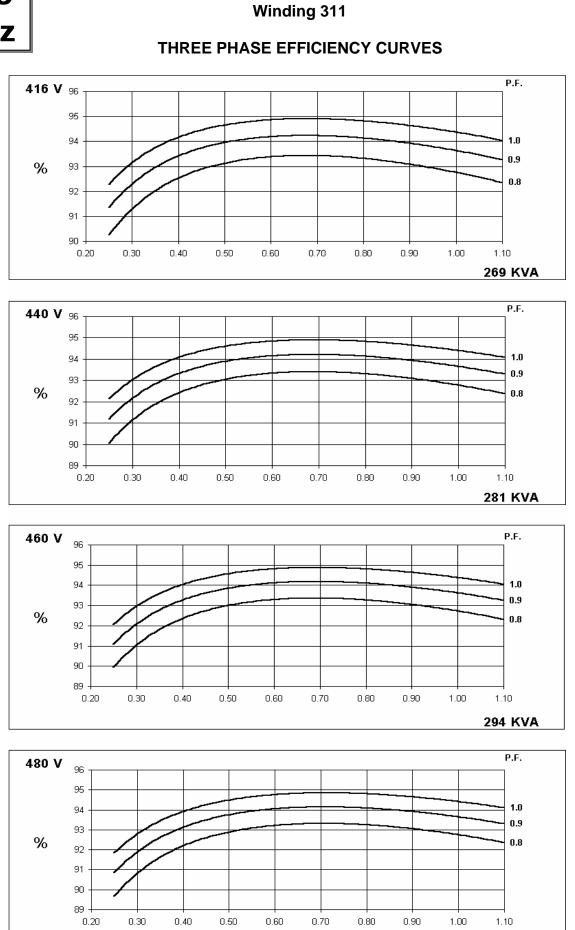
3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

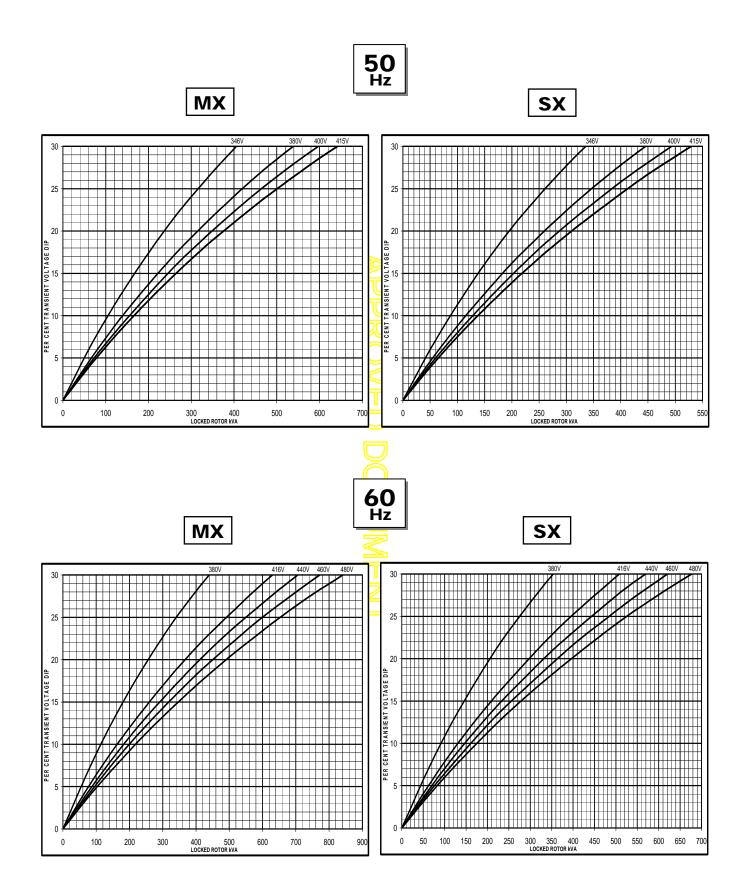
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.


Front cover drawing typical of product range.

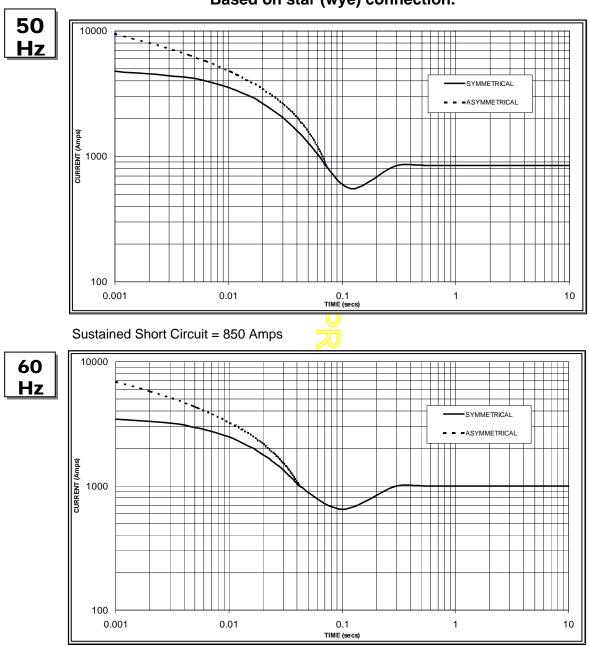

UCDI274J

WINDING 311

WINDING 311											
CONTROL SYSTEM SER.3	SEPARATE	LY EXCITED) BY P.M.G.								
A.V.R.	MX321	MX341									
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	GINE GOVE	RNING						
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIR	CUIT DECRE	MENT CUR	VES (page 7)						
CONTROL SYSTEM SER.4	SELF EXCIT	ED									
A.V.R.	SX460	 AS440									
VOLTAGE REGULATION	± 1.0 %										
		± 1.0 %					-				
SUSTAINED SHORT CIRCUIT SERIES 4 CONTROL DOES NOT SUSTAIN A SHORT CIRCUIT CURRENT											
INSULATION SYSTEM		CLASS H									
PROTECTION				IP2	23						
RATED POWER FACTOR				0.	8						
STATOR WINDING			DOL	JBLE LAYEF		RIC					
WINDING PITCH				TWO T	HIRDS						
WINDING LEADS				1	2						
STATOR WDG. RESISTANCE		0 0126 (Ohms PER PI	HASE AT 22		STAR CONN	ECTED				
ROTOR WDG. RESISTANCE		5.0120 (2.08 Ohm							
				20 Ohms							
EXCITER STATOR RESISTANCE											
EXCITER ROTOR RESISTANCE		0.091 Ohms PER PHASE AT 22°C									
R.F.I. SUPPRESSION	BS EN	BS EN 61000-6-2 & BS EN 61000-6-4, VDE 0875G, VDE 0875N. refer to factory for others									
WAVEFORM DISTORTION	NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0%										
MAXIMUM OVERSPEED	2250 Rev/Min										
BEARING NON-DRIVE END	BALL. 6310-2RS (ISO)										
WEIGHT COMP. GENERATOR		727 kg									
WEIGHT WOUND STATOR				304	kg						
WEIGHT WOUND ROTOR			\bigcirc	271.	0						
WR ² INERTIA			\bigcirc	2.3744	-						
SHIPPING WEIGHTS in a crate			<u>—</u> —	740	-						
PACKING CRATE SIZE		50	Hz	123 x 67 x		60	Н7				
TELEPHONE INTERFERENCE			<2%			TIF					
COOLING AIR			c 1230 cfm			0.69 m³/sec					
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277			
VOLTAGE PARALLEL STAR	190/110	200/115	-208 /120	220/127	208/120	220/127	230/133	240/138			
VOLTAGE SERIES DELTA	220/110	230/115	240 /120	254/127	240/120	254/127	266/133	277/138			
KVA BASE RATING FOR REACTANCE VALUES	230	230	230	N/A	269	281	294	300			
Xd DIR. AXIS SYNCHRONOUS	1.939	1.750	1.626	-	2.651	2.475	2.370	2.221			
X'd DIR. AXIS TRANSIENT	0.103	0.093	0.086	-	0.164	0.153	0.147	0.137			
X"d DIR. AXIS SUBTRANSIENT	0.070	0.064	0.059	-	0.096	0.090	0.086	0.080			
Xq QUAD. AXIS REACTANCE	0.886	0.800	0.743	-	1.206	1.126	1.078	1.010			
X"q QUAD. AXIS SUBTRANSIENT	0.163	0.147	0.137	-	0.138	0.129	0.123	0.116			
XL LEAKAGE REACTANCE	0.062	0.056	0.052	-	0.081	0.076	0.072	0.068			
X2 NEGATIVE SEQUENCE	0.117	0.105	0.098	-	0.117	0.109	0.105	0.098			
Xo ZERO SEQUENCE	0.044	0.040	0.037	-	0.048	0.045	0.043	0.040			
REACTANCES ARE SATURAT	ED	V	ALUES ARE			ND VOLTAG	E INDICATE	D			
				0.04							
				0.01							
T'do O.C. FIELD TIME CONST. Ta ARMATURE TIME CONST.				0.0							
SHORT CIRCUIT RATIO											
HORT CIRCUIT RATIO 1/Xd											


60 Hz STAMFORD

5


300 KVA

Winding 311

Locked Rotor Motor Starting Curve

UCDI274J

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 1,000 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz					
Voltage	Factor	Voltage	Factor				
380v	X 1.00	416v	X 1.00				
400v	X 1.05	440v	X 1.07				
415v	X 1.10	460v	X 1.12				
			X 1.16				
The quetoine	d ourrent vol	ua ia aanatan	t irragadiva				

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

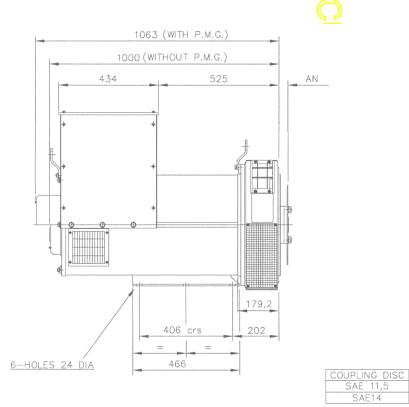
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

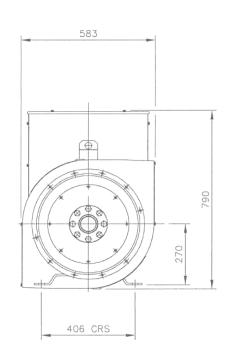
All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732

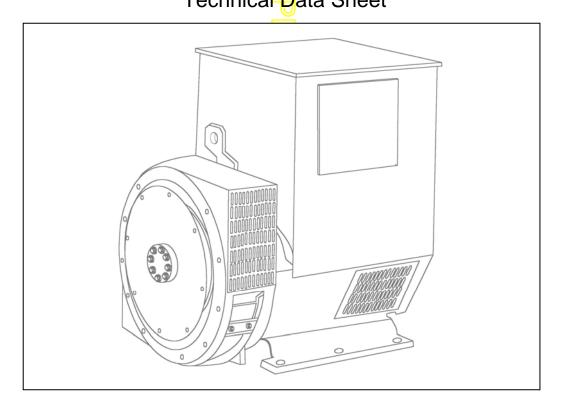

UCDI274J



Winding 311 / 0.8 Power Factor

	KAIIIGO																
	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H - 1	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	°°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	210	210	210	N/A	230	230	230	N/A	250	250	250	N/A	260	260	260	N/A
	kW	168	168	168	N/A	184	184	184	N/A	200	200	200	N/A	208	208	208	N/A
	Efficiency (%)	92.8	92.8	92.9	N/A	92.4	92.6	92.6	N/A	92.1	92.2	92.3	N/A	91.8	92.0	92.1	N/A
	kW Input	181.0	181.0	180.8	N/A	199.1	198.7	198.7	N/A	217.2	216.9	216.7	N/A	226.6	226.1	225.8	N/A
						_	7			-				-			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	250	264	275	275	269	28	294	300	288	300	313	319	294	306	319	325
	kW	200.0	211.2	220.0	220.0	215.2	224.8	235.2	240.0	230.4	240.0	250.4	255.2	235.2	244.8	255.2	260.0
	Efficiency (%)	93.0	93.0	93.0	93.0	92.8	92. <mark>8</mark>	92.7	92.8	92.5	92.5	92.5	92.5	92.4	92.4	92.4	92.4
	kW Input	215.1	227.1	236.6	236.6	231.9	242.2	// 253.7	258.6	249.1	259.5	270.7	275.9	254.5	264.9	276.2	281.4
								J									

AN 39,68 25,4


Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

UCDI274K - Winding 311 Technica Data Sheet

UCDI274K SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the demain rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This deexcites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

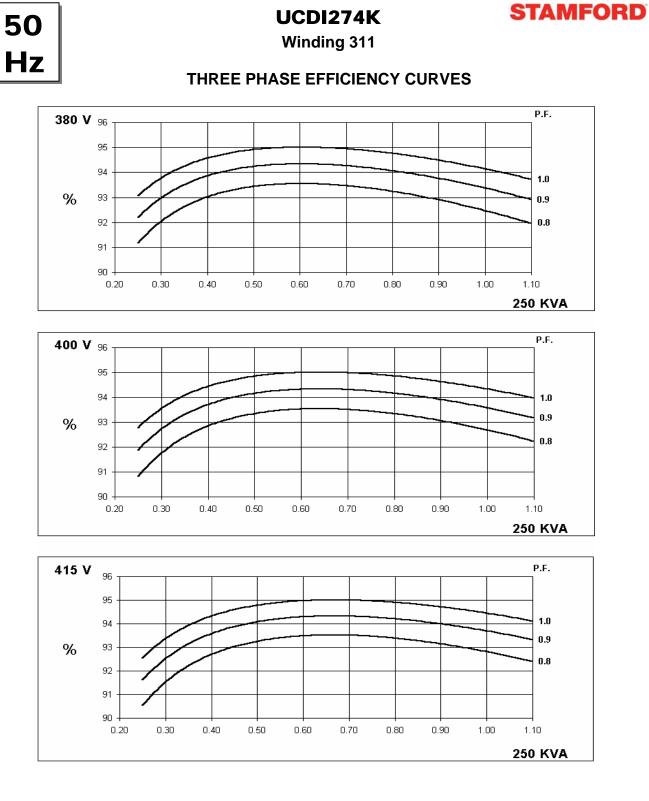
5% when air inlet filters are fitted.

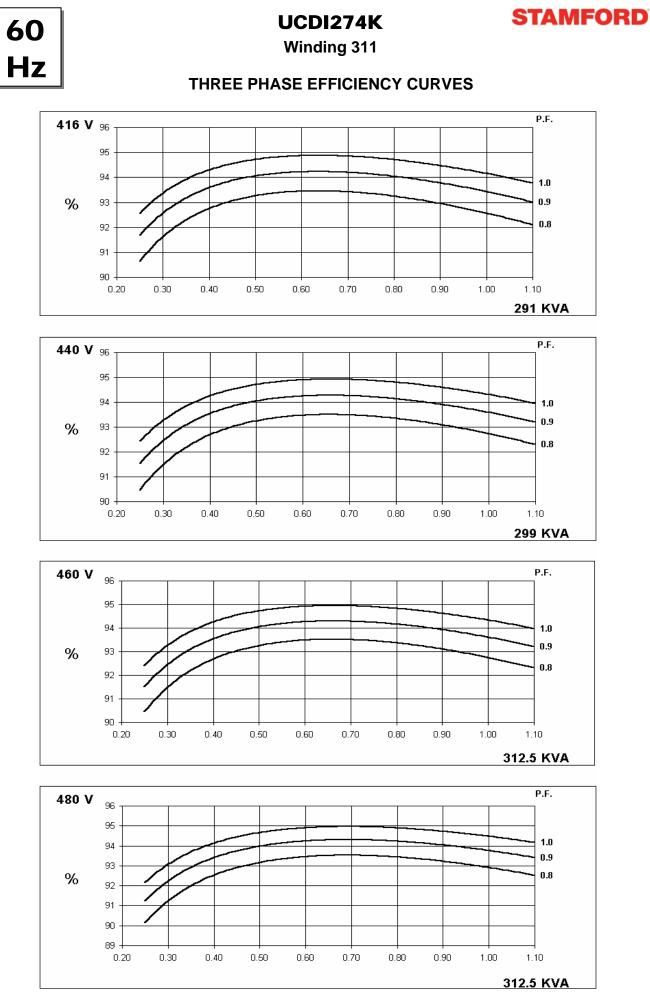
3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

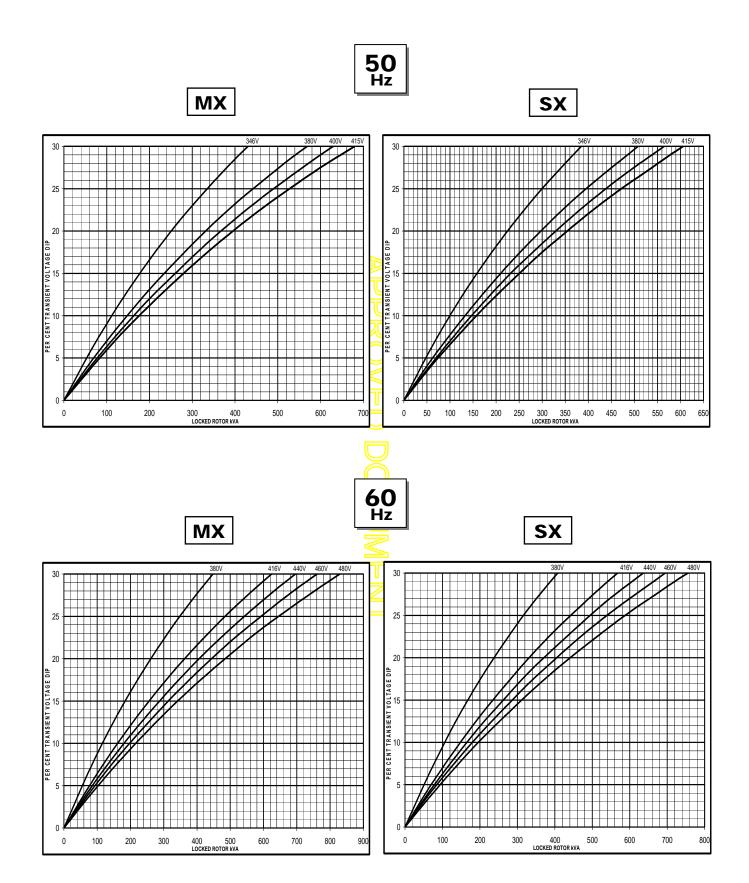
Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

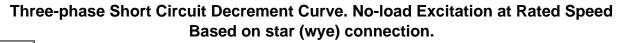
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

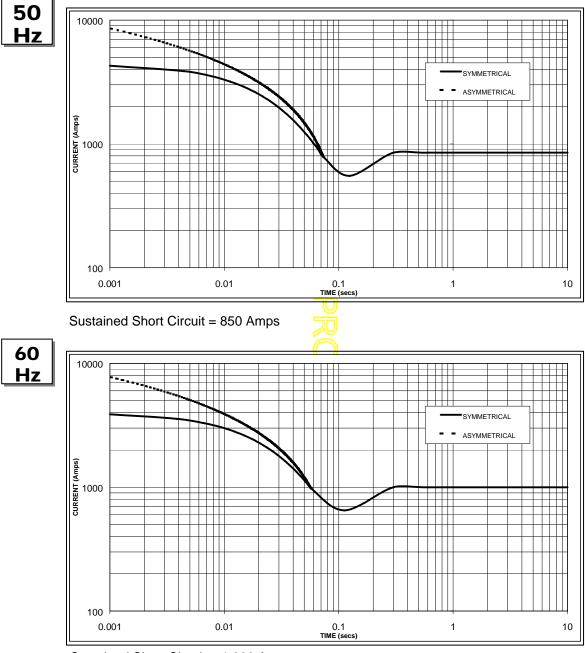

Front cover drawing typical of product range.


UCDI274K

WINDING 311


i												
CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.									
A.V.R.	MX321	MX341										
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	GINE GOVE	RNING							
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIR	CUIT DECRE	MENT CUR	VES (page 7)							
CONTROL SYSTEM	SELF EXCIT	ΓED										
A.V.R.	SX460	AS440										
VOLTAGE REGULATION	± 1.0 %	± 1.0 % ± 1.0 % With 4% ENGINE GOVERNING										
SUSTAINED SHORT CIRCUIT	SERIES 4 C	ERIES 4 CONTROL DOES NOT SUSTAIN A SHORT CIRCUIT CURRENT										
INSULATION SYSTEM				CLAS	SS H							
PROTECTION				IP	23							
RATED POWER FACTOR				0.	8							
STATOR WINDING				-								
			DOU									
WINDING PITCH				TWO T								
WINDING LEADS			<u> </u>	1:								
STATOR WDG. RESISTANCE		0.0126 0	Dhims PER PI	HASE AT 22	°C SERIES	STAR CONN	ECTED					
ROTOR WDG. RESISTANCE				2.08 Ohm	s at 22°C							
EXCITER STATOR RESISTANCE				20 Ohms	at 22°C							
EXCITER ROTOR RESISTANCE			0.091	Ohms PER	PHASE AT 2	2°C						
R.F.I. SUPPRESSION	BS EN	BS EN 61000-6-2 & BS EN 61000-6-4, VDE 0875G, VDE 0875N. refer to factory for others										
WAVEFORM DISTORTION		NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0%										
MAXIMUM OVERSPEED		2250 Rev/Min										
BEARING NON-DRIVE END			Π	BALL. 6310	-2RS (ISO)							
WEIGHT COMP. GENERATOR				727	()							
WEIGHT WOUND STATOR				304	-							
WEIGHT WOUND ROTOR			\Box	272.	-							
WR ² INERTIA			õ	2.3934	kgm ²							
SHIPPING WEIGHTS in a crate			\leq	740	kg							
PACKING CRATE SIZE			$\langle \rangle$	123 x 67 x	103 (cm)							
			Hz			60						
TELEPHONE INTERFERENCE			<2%			TIF						
COOLING AIR			c <u>123</u> 0 cfm			0.69 m ³ /sec						
VOLTAGE SERIES STAR (Y)	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277				
VOLTAGE PARALLEL STAR (Y)	190/110	200/115	-208/120	220/127	208/120	220/127	230/133	240/138				
VOLTAGE SERIES DELTA kVA BASE RATING FOR REACTANCE	220/110	230/115	240 /120	254/127	240/120	254/127	266/133	277/138				
VALUES	250	250	250	N/A	291	299	312.5	312.5				
Xd DIR. AXIS SYNCHRONOUS	2.825	2.550	2.369	-	3.161	2.903	2.776	2.550				
X'd DIR. AXIS TRANSIENT	0.132	0.119	0.111	-	0.148	0.136	0.130	0.119				
X"d DIR. AXIS SUBTRANSIENT	0.086	0.078	0.072	-	0.097	0.089	0.085	0.078				
Xq QUAD. AXIS REACTANCE	1.263	1.140	1.059	-	1.413	1.298	1.241	1.140				
X"q QUAD. AXIS SUBTRANSIENT	0.152	0.137	0.127	-	0.170	0.156	0.149	0.137				
XL LEAKAGE REACTANCE	0.066	0.060	0.056	-	0.074	0.068	0.065	0.060				
X2 NEGATIVE SEQUENCE	0.120	0.108	0.100	-	0.134	0.123	0.118	0.108				
X0 ZERO SEQUENCE	0.022	0.020	0.019	-	0.025	0.023	0.022	0.020				
REACTANCES ARE SATURAT	red .	V	ALUES ARE			ND VOLTAG	E INDICATEI	0				
				0.04								
T"d SUB-TRANSTIME CONST. T'do O.C. FIELD TIME CONST.				0.0								
Ta ARMATURE TIME CONST.				0.01								
SHORT CIRCUIT RATIO												
L	RT CIRCUIT RATIO 1/Xd											


Winding 311


Locked Rotor Motor Starting Curve

UCDI274K

Sustained Short Circuit = 1,000 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz					
Voltage	Factor	Voltage	Factor				
380v	X 1.00	416v	X 1.00				
400v	X 1.05	440v	X 1.07				
415v	X 1.10	460v	X 1.12				
			X 1.16				
The eveteine	d ourront vol	480v	-				

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

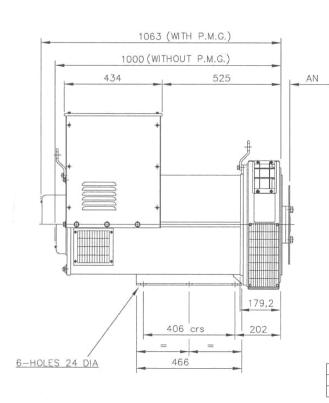
All other times are unchanged

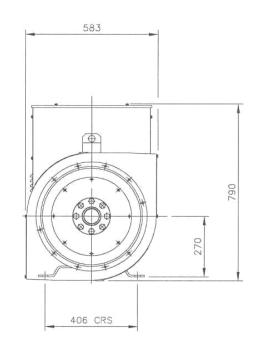
Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732

UCDI274K



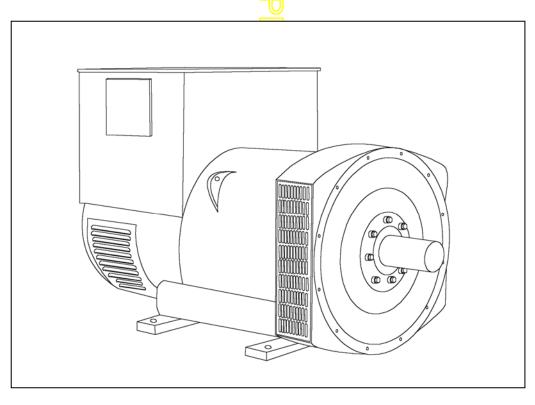

Winding 311 / 0.8 Power Factor

RATINGS

	Class - Temp Rise Cont. F - 105/40°C			Cont. H - 125/40°C				Standby - 150/40°C				Standby - 163/27°C					
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	229.0	229.0	229.0	N/A	250.0	250.0	250.0	N/A	265.0	265.0	265.0	N/A	275.0	275.0	275.0	N/A
	kW	183.2	183.2	183.2	N/A	200.0	200.0	200.0	N/A	212.0	212.0	212.0	N/A	220.0	220.0	220.0	N/A
	Efficiency (%)	92.8	93.0	93.1	N/A	92.5	92.7	92.8	N/A	92.2	92.4	92.6	N/A	92.0	92.2	92.4	N/A
	kW Input	197.4	197.0	196.8	N/A	216.2	215.7	215.5	N/A	229.9	229.4	228.9	N/A	239.1	238.6	238.1	N/A
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	267.0	275.0	286.5	288.0	291.0	299.0	312.5	312.5	304.0	312.5	331.3	331.3	312.0	320.0	343.8	343.8
	kW	213.6	220.0	229.2	230.4	232.8	239.2	250.0	250.0	243.2	250.0	265.0	265.0	249.6	256.0	275.0	275.0
	Efficiency (%)	92.9	93.0	93.1	93.2	92.6	92. <mark>7</mark>	92.8	92.9	92.4	92.6	92.5	92.7	92.2	92.4	92.3	92.5
	kW Input	229.9	236.6	246.2	247.3	251.4	258.0	269.4	269.1	263.2	270.0	286.5	285.9	270.7	277.1	298.0	297.3

COUPLING DISC	AN
SAE 11,5	39,68
SAE 14	25,4

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100


www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

HCI 434C/444C - Winding 311

Technical Data Sheet

HCI434C/444C SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2 100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

AS440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

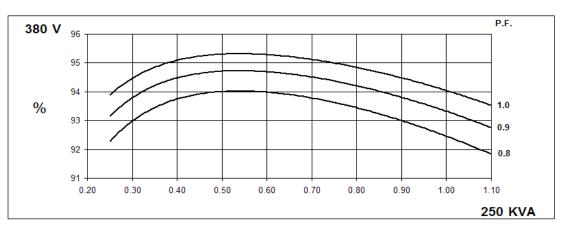
3% for every 5° C by which the operational ambient temperature exceeds 40° C.

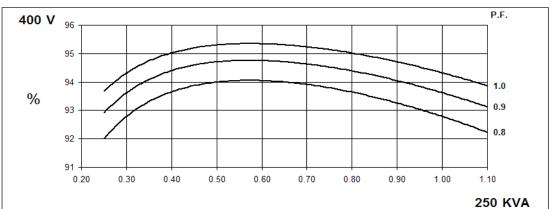
Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

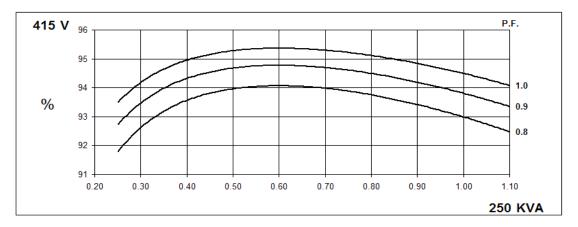
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

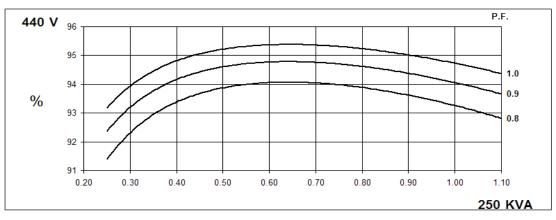
Front cover drawing typical of product range.

WINDING 311

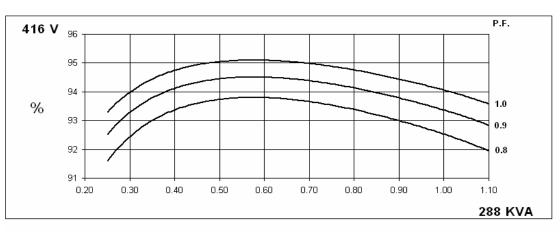

WINDING 311											
CONTROL SYSTEM	SEPARATE	LY EXCITE	D BY P.M.G	à.							
A.V.R.	MX321	MX341									
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	IGINE GOV	ERNING						
SUSTAINED SHORT CIRCUIT	REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)										
		001			onn 10 (ba	ge :)					
CONTROL SYSTEM	SELF EXC	TED									
A.V.R.	AS440										
VOLTAGE REGULATION	± 1.0 %	With 4% El	NGINE GOV	ERNING							
SUSTAINED SHORT CIRCUIT	TAINED SHORT CIRCUIT WILL NOT SUSTAIN A SHORT CIRCUIT										
INSULATION SYSTEM				CLA	SS H						
				-	23						
PROTECTION					-						
RATED POWER FACTOR					.8						
STATOR WINDING				DOUBLE L	AYER LAP						
WINDING PITCH				TWO 1	HIRDS						
WINDING LEADS				1	2						
STATOR WDG. RESISTANCE		0.0166 O	hms PER PI	HASE AT 22	°C SERIES	STAR CON	NECTED				
ROTOR WDG. RESISTANCE				0.92 Ohm	s at 22°C						
EXCITER STATOR RESISTANCE				18 Ohms	at 22°C						
EXCITER ROTOR RESISTANCE			0.068	Ohms PER	PHASE AT	22°C					
R.F.I. SUPPRESSION	BS EN 6	1000-6-2 &	BS EN 6100	0-6-4,VDE ()875G, VDE	0875N. refe	er to factory	for others			
WAVEFORM DISTORTION			()				,				
WAVEFORM DISTORTION NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0% MAXIMUM OVERSPEED 2250 Rev/Min								,,,			
BEARING DRIVE END											
	BALL. 6317 (ISO) BALL. 6314 (ISO)										
BEARING NON-DRIVE END				DALL. 0.	514 (150)		ARING				
WEIGHT COMP. GENERATOR							5 kg				
WEIGHT WOUND STATOR			70 kg 370 kg								
WEIGHT WOUND ROTOR			4 kg			301 kg					
WR ² INERTIA			1 kgm ²				3 kgm ²				
SHIPPING WEIGHTS in a crate			0 <mark>kg</mark>				5 kg				
PACKING CRATE SIZE		155 x 87	x 107(cm)			155 x 87	x 107(cm)				
		50	Hz			60	Hz				
TELEPHONE INTERFERENCE		THF	- <mark><2%</mark>			TIF	<50				
COOLING AIR		I	-1700 cfm	I		0.99 m ³ /se	c 2100 cfm	1			
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277			
VOLTAGE PARALLEL STAR	190/110	200/115	20 <mark>8</mark> /120	220/127	208/120	220/127	230/133	240/138			
VOLTAGE SERIES DELTA kVA BASE RATING FOR	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138			
REACTANCE VALUES	250	250	250	250	288	300	315	315			
Xd DIR. AXIS SYNCHRONOUS	3.15	2.84	2.64	2.35	3.77	3.51	3.37	3.10			
X'd DIR. AXIS TRANSIENT	0.20	0.18	0.17	0.15	0.24	0.23	0.22	0.20			
X"d DIR. AXIS SUBTRANSIENT	0.14	0.13	0.12	0.11	0.16	0.15	0.14	0.13			
Xq QUAD. AXIS REACTANCE	2.71	2.44	2.27	2.02	3.25	3.03	2.91	2.67			
X"q QUAD. AXIS SUBTRANSIENT	0.39	0.36	0.33	0.29	0.43	0.40	0.39	0.36			
XL LEAKAGE REACTANCE	0.10	0.09	0.08	0.07	0.10	0.09	0.09	0.08			
X2 NEGATIVE SEQUENCE	0.27	0.25	0.23	0.20	0.30	0.28	0.27	0.25			
X ₀ ZERO SEQUENCE	0.10	0.09	0.08	0.07	0.10	0.09	0.09	0.08			
REACTANCES ARE SATURA	TED	VA	LUES ARE F			ND VOLTA	GE INDICA	TED			
T'd TRANSIENT TIME CONST.)8s						
					19s 7s						
T'do O.C. FIELD TIME CONST. Ta ARMATURE TIME CONST.					7s 18s						
SHORT CIRCUIT RATIO					Xd						
	I										

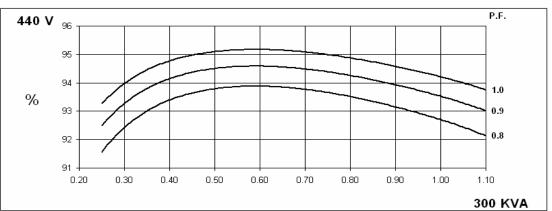

50

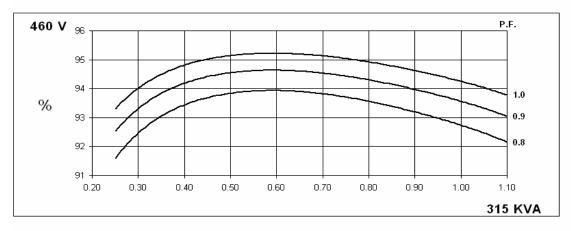

Hz

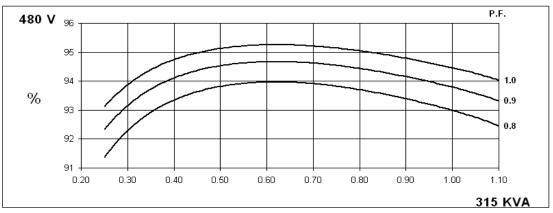

Winding 311

THREE PHASE EFFICIENCY CURVES

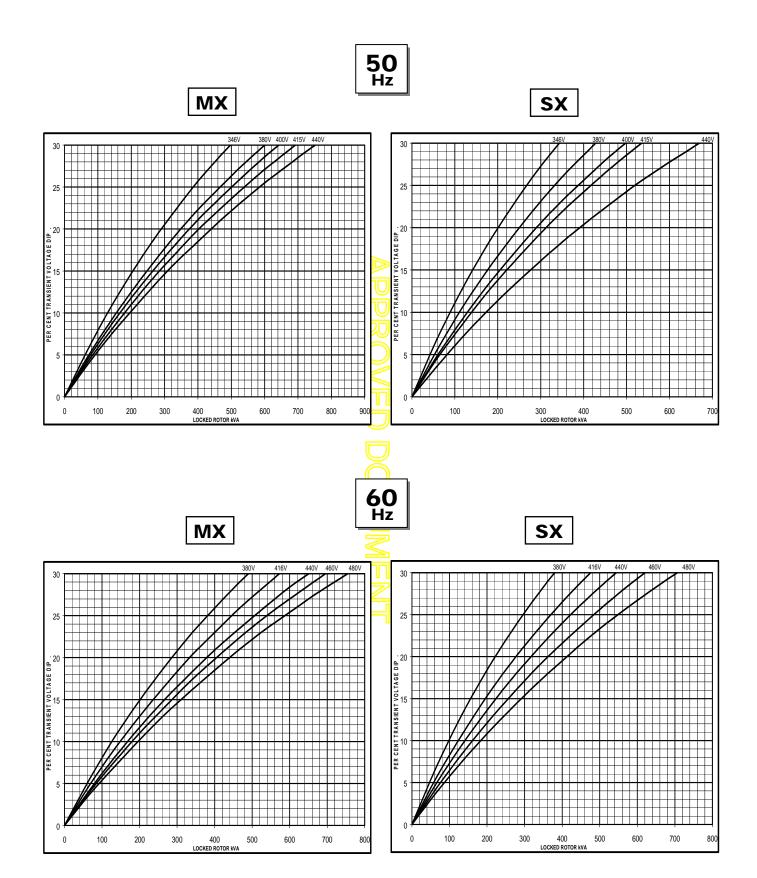


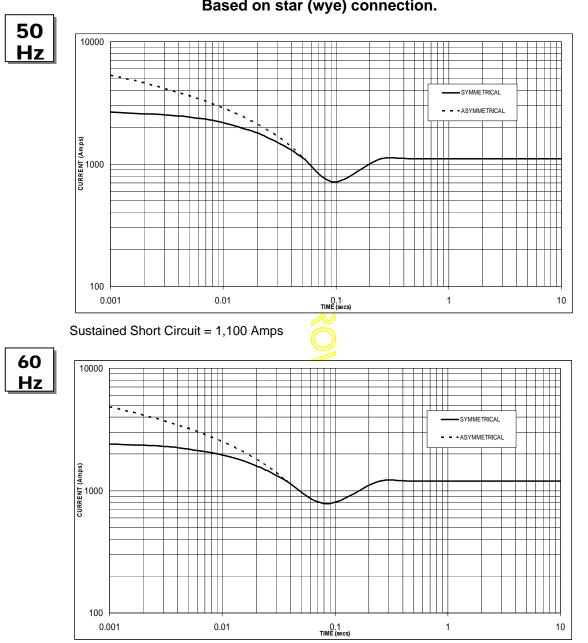

60


Hz


Winding 311

THREE PHASE EFFICIENCY CURVES




Winding 311

Locked Rotor Motor Starting Curve

HCI434C

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 1,200 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

Hz	60	Hz
Factor	Voltage	Factor
X 1.00	416v	X 1.00
X 1.05	440v	X 1.06
X 1.09	460v	X 1.10
X 1.16	480v	X 1.15
	Factor X 1.00 X 1.05 X 1.09	Factor Voltage X 1.00 416v X 1.05 440v X 1.09 460v

The sustained current value is constant irrespective of voltage level

Note 2

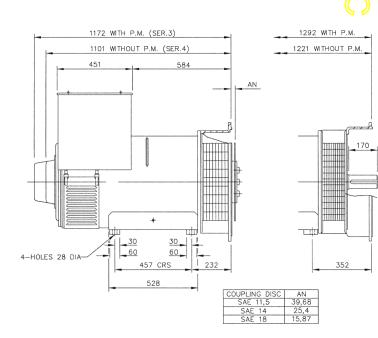
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

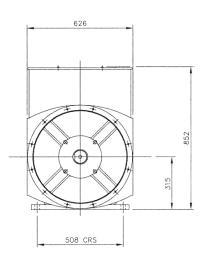
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.
All other tim	es are uncha	inged	-

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2

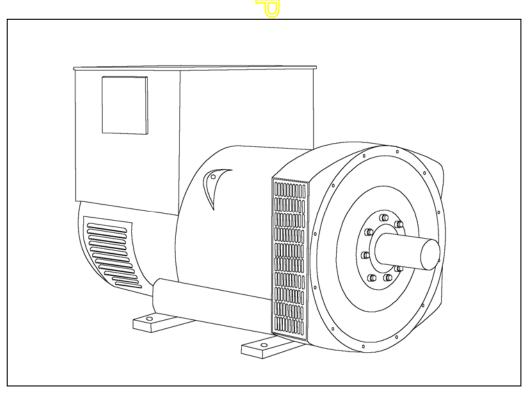

Winding 311 / 0.8 Power Factor


RATINGS

	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H - 1	125/40	°C	St	andby -	150/40	°C	Sta	andby -	163/27	°°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	230	230	230	230	250	250	250	250	270	270	270	270	275	275	275	275
	kW	184	184	184	184	200	200	200	200	216	216	216	216	220	220	220	220
	Efficiency (%)	92.9	93.2	93.3	93.6	92.5	92.8	93.0	93.3	92.0	92.3	92.6	92.9	91.8	92.2	92.5	92.8
	kW Input	198	197	197	197	216	216	215	214	235	234	233	233	240	239	238	237
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	260	275	290	290	288	300	315	315	300	320	335	335	310	330	345	345
	kW	208	220	232	232	230	240	252	252	240	256	268	268	248	264	276	276
	Efficiency (%)	93.0	93.1	93.1	93.3	92.5	92.7	92.7	93.0	92.3	92.3	92.4	92.7	92.1	92.2	92.2	92.5
	kW Input	224	236	249	249	249	259	272	271	260	277	290	289	269	286	299	298
								J									

80,030 80,011

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100


www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

HCI 434D/444D - Winding 311

Technical Data Sheet

HCI434D/444D SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2 100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

AS440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

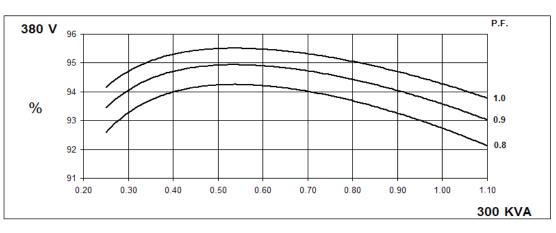
3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

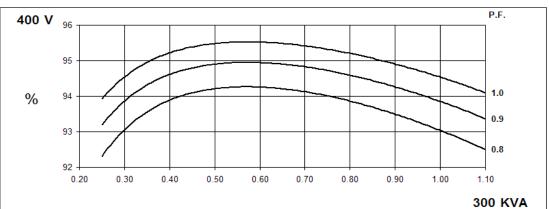
3% for every 5° C by which the operational ambient temperature exceeds 40° C.

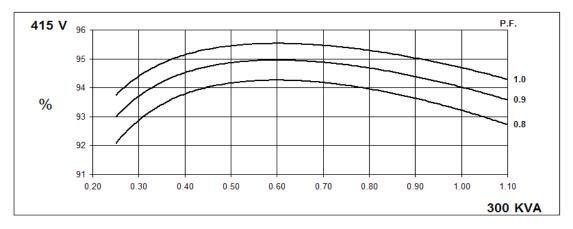
Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

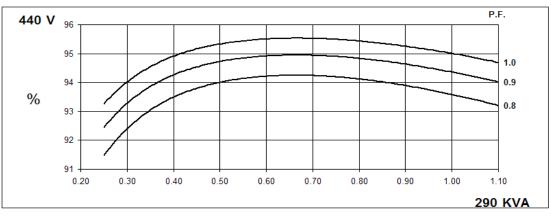
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

Front cover drawing typical of product range.

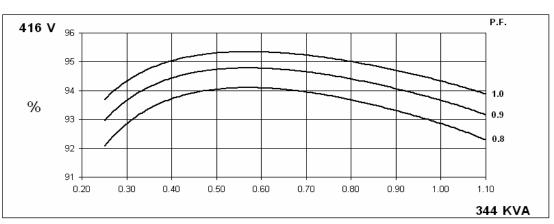


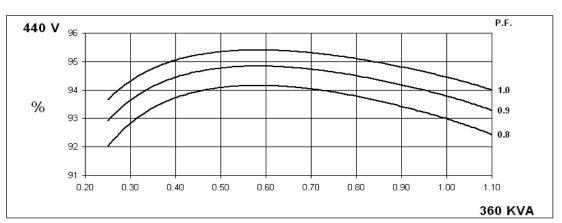

WINDING 311

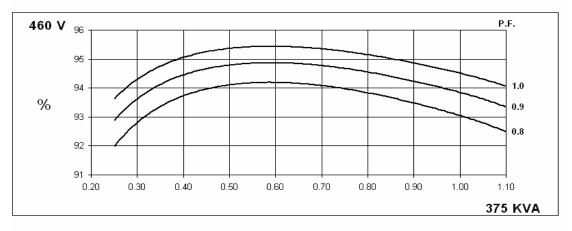

CONTROL SYSTEM	SEPARATE		D BY P.M.G	i.					
A.V.R.	MX321	MX341		-					
VOLTAGE REGULATION	± 0.5 %		With 4% EN						
						~ 7)			
SUSTAINED SHORT CIRCUIT	REFER IU	SHURT CI	RCUIT DEC	REMENTC	URVES (pag	je 7)			
CONTROL SYSTEM	SELF EXC	TED							
A.V.R.	AS440								
VOLTAGE REGULATION	± 1.0 %	With 4% EN	IGINE GOV	ERNING					
SUSTAINED SHORT CIRCUIT	WILL NOT	SUSTAIN A	SHORT CIR	RCUIT					
INSULATION SYSTEM	ſ			CLA	SS H				
PROTECTION									
RATED POWER FACTOR	IP23 0.8								
					.o AYER LAP				
STATOR WINDING									
WINDING PITCH				-	HIRDS				
WINDING LEADS			<u> </u>		2				
STATOR WDG. RESISTANCE		0.0124 OI	hms PER PH	HASE AT 22	°C SERIES	STAR CON	NECTED		
ROTOR WDG. RESISTANCE				1.05 Ohm	s at 22°C				
EXCITER STATOR RESISTANCE				18 Ohms	s at 22°C				
EXCITER ROTOR RESISTANCE			0.068	Ohms PER	PHASE AT	22°C			
R.F.I. SUPPRESSION	BS EN 6	1000-6-2 &	BS EN 6100	0-6-4,VDE ()875G, VDE	0875N. refe	er to factory	for others	
WAVEFORM DISTORTION	NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0%								
MAXIMUM OVERSPEED	2250 Rev/Min								
BEARING DRIVE END	BALL. 6317 (ISO)								
BEARING NON-DRIVE END	BALL. 6314 (ISO)								
		1 BEA	ARING		()	2 BEA	ARING		
WEIGHT COMP. GENERATOR		940) kg			950) kg		
WEIGHT WOUND STATOR		415	ōkg			41	5 kg		
WEIGHT WOUND ROTOR		361	1 kg			338	3 kg		
WR ² INERTIA			1 kgm ²				3 kgm ²		
SHIPPING WEIGHTS in a crate			0 kg				0 kg		
PACKING CRATE SIZE			x 107(cm)				x 107(cm)		
			Hz				Hz <50		
TELEPHONE INTERFERENCE			: <mark><2%</mark> : 1700 cfm				<50 c 2100 cfm		
VOLTAGE SERIES STAR	380/220	400/231	41 <mark>5</mark> /240	440/254	416/240	440/254	460/266	480/277	
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138	
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138	
KVA BASE RATING FOR	300	300	300	290	344	360	375	375	
REACTANCE VALUES Xd DIR. AXIS SYNCHRONOUS	3.16	2.85	2.65	2.28	3.60	3.37	3.21	2.95	
X'd DIR. AXIS TRANSIENT	0.20	0.18	0.17	0.15	0.22	0.21	0.20	0.18	
X"d DIR. AXIS SUBTRANSIENT	0.14	0.13	0.12	0.10	0.15	0.14	0.14	0.10	
Xq QUAD. AXIS REACTANCE	2.66	2.40	2.23	1.92	3.09	2.89	2.75	2.53	
X"q QUAD. AXIS SUBTRANSIENT	0.39	0.36	0.33	0.28	0.40	0.38	0.36	0.33	
XL LEAKAGE REACTANCE	0.07	0.06	0.06	0.05	0.09	0.09	0.08	0.07	
X2 NEGATIVE SEQUENCE	0.26	0.24	0.22	0.19	0.28	0.27	0.25	0.23	
X0ZERO SEQUENCE	0.10	0.09	0.08	0.07	0.10	0.09	0.09	0.08	
REACTANCES ARE SATURA	TED	VAL	UES ARE F			ND VOLTA	GE INDICA	ΓED	
T'd TRANSIENT TIME CONST.)8s				
					19s 7s				
T'do O.C. FIELD TIME CONST. Ta ARMATURE TIME CONST.					78 18s				
SHORT CIRCUIT RATIO					Xd				
	1								

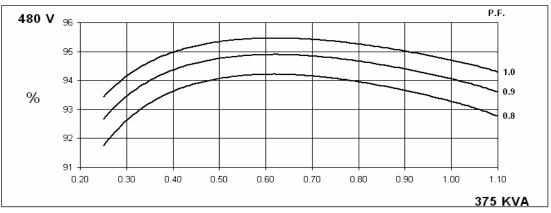

Winding 311

THREE PHASE EFFICIENCY CURVES

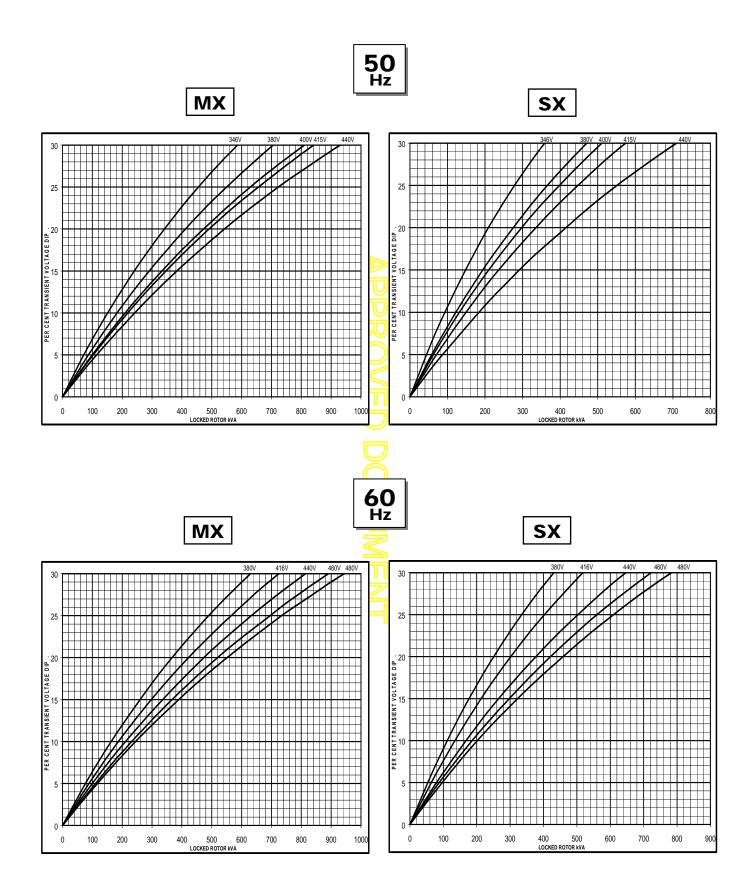


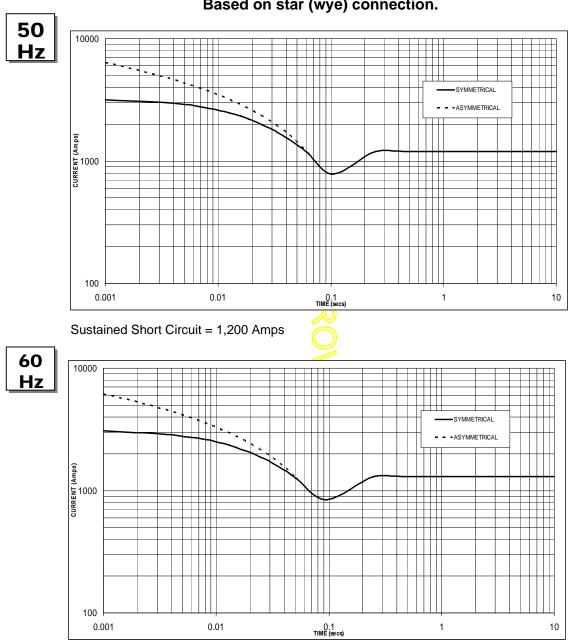





Winding 311

THREE PHASE EFFICIENCY CURVES




Winding 311

Locked Rotor Motor Starting Curve

HCI434D

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

Hz	60Hz						
Factor	Voltage	Factor					
X 1.00	416v	X 1.00					
X 1.05	440v	X 1.06					
X 1.09	460v	X 1.10					
X 1.16	480v	X 1.15					
	X 1.00 X 1.05 X 1.09	Factor Voltage X 1.00 416v X 1.05 440v X 1.09 460v					

The sustained current value is constant irrespective of voltage level

Note 2

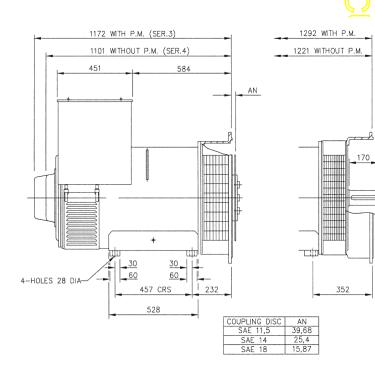
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

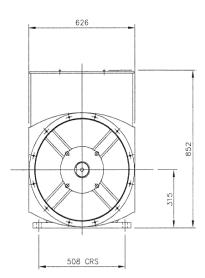
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.
All other time	es are uncha	inged	-

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

HCI434D/444D



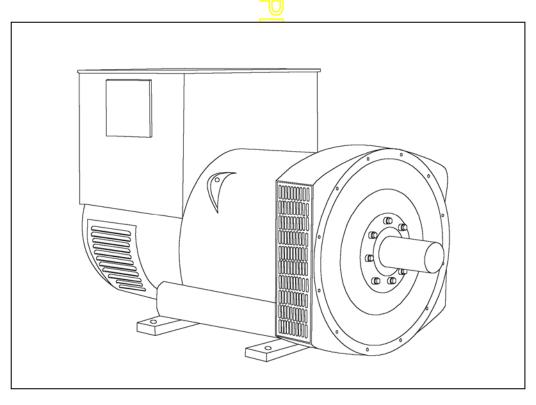

Winding 311 / 0.8 Power Factor

RATINGS

	Class - Temp Rise Cont. F - 105/40°C			Co	Cont. H - 125/40°C			St	andby -	150/40	°C	Standby - 163/27°C					
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	280	280	280	270	300	300	300	290	320	320	320	310	330	330	330	320
	kW	224	224	224	216	240	240	240	232	256	256	256	248	264	264	264	256
	Efficiency (%)	93.1	93.4	93.5	93.8	92.7	93.0	93.2	93.6	92.3	92.7	92.9	93.3	92.1	92.5	92.7	93.2
	kW Input	241	240	240	230	259	258	258	248	277	276	276	266	287	285	285	275
							5			T				I			1
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
112	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	315	335	345	345	344	360	375	375	365	385	400	400	375	395	415	415
	kW	252	268	276	276	275	288	300	300	292	308	320	320	300	316	332	332
	Efficiency (%)	93.3	93.3	93.4	93.6	92.9	93. <mark>0</mark>	93.1	93.3	92.5	92.6	92.7	93.0	92.4	92.5	92.5	92.8
	kW Input	270	287	296	295	296	310	322	322	316	333	345	344	325	342	359	358

80,030 80,011

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100


www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

HCI 434E/444E - Winding 311

Technical Data Sheet

HCI434E/444E SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2 100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

AS440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

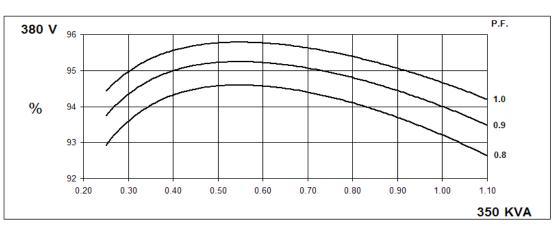
3% for every 5° C by which the operational ambient temperature exceeds 40° C.

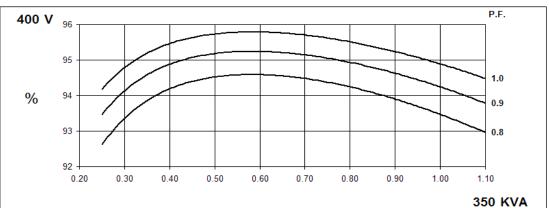
Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

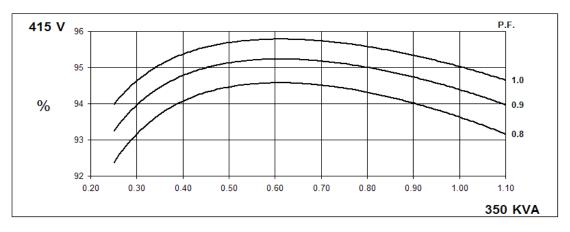
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

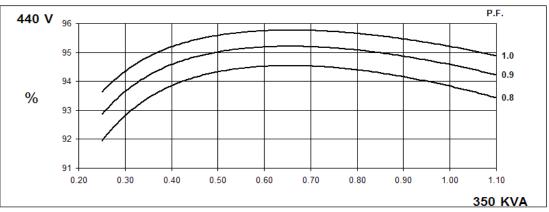
Front cover drawing typical of product range.

WINDING 311

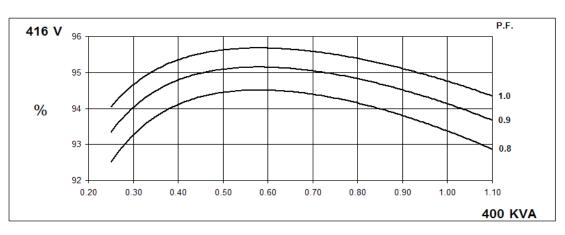

CONTROL SYSTEM	SEDADATE													
			D BY P.M.G	1.										
A.V.R.	MX321	MX341												
VOLTAGE REGULATION	± 0.5 %		With 4% EN											
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CI	RCUIT DEC	REMENT C	URVES (pag	ge 7)								
CONTROL SYSTEM	SELF EXC	TED												
A.V.R.	AS440													
VOLTAGE REGULATION	± 1.0 %	± 1.0 % With 4% ENGINE GOVERNING												
SUSTAINED SHORT CIRCUIT	WILL NOT	WILL NOT SUSTAIN A SHORT CIRCUIT												
INSULATION SYSTEM	CLASS H													
PROTECTION		IP23												
RATED POWER FACTOR				0	.8									
STATOR WINDING					AYER LAP									
WINDING PITCH					HIRDS									
				-	2									
WINDING LEADS		0.000.01	ms PER PH											
STATOR WDG. RESISTANCE		0.009 01				STAR CON	NECTED							
ROTOR WDG. RESISTANCE				1.19 Ohm										
EXCITER STATOR RESISTANCE				18 Ohms										
EXCITER ROTOR RESISTANCE					PHASE AT	-								
R.F.I. SUPPRESSION	BS EN 6	1000-6-2 &	B <mark>S EN</mark> 6100	0-6-4,VDE (0875G, VDE	0875N. refe	er to factory	for others						
WAVEFORM DISTORTION	N	IO LOAD < [^]	1.5% NON-I	DISTORTIN	G BALANCE	ED LINEAR	LOAD < 5.0	%						
MAXIMUM OVERSPEED			\leq	2250 F	Rev/Min									
BEARING DRIVE END				BALL. 63	317 (ISO)									
BEARING NON-DRIVE END			\Box	BALL. 63	314 (ISO)									
		1 BEA	RING			2 BEA	ARING							
WEIGHT COMP. GENERATOR		102	4 kg			103	0 kg							
WEIGHT WOUND STATOR			0 <mark>kg</mark>) kg							
WEIGHT WOUND ROTOR) kg				7 kg							
			1 kgm ²				3 kgm ²							
SHIPPING WEIGHTS in a crate PACKING CRATE SIZE			5 <mark>.kg</mark> x 107(cm)		1100 kg 155 x 87 x 107(cm)									
FACKING CRATE SIZE			Hz		60 Hz									
TELEPHONE INTERFERENCE			<2%				:- <u>-</u> <50							
COOLING AIR		0.8 m ³ /sec	-1700 cfm			0.99 m ³ /se	c 2100 cfm							
VOLTAGE SERIES STAR	380/220	400/231	41 <mark>5</mark> /240	440/254	416/240	440/254	460/266	480/277						
VOLTAGE PARALLEL STAR	190/110	200/115	20 <mark>8</mark> /120	220/127	208/120	220/127	230/133	240/138						
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138						
kVA BASE RATING FOR REACTANCE VALUES	350	350	350	350	400	420	440	440						
Xd DIR. AXIS SYNCHRONOUS	3.01	2.71	2.52	2.24	3.47	3.26	3.12	2.87						
X'd DIR. AXIS TRANSIENT	0.20	0.18	0.17	0.15	0.21	0.20	0.19	0.17						
X"d DIR. AXIS SUBTRANSIENT	0.14	0.13	0.12	0.11	0.15	0.14	0.13	0.12						
Xq QUAD. AXIS REACTANCE	2.58	2.33	2.16	1.92	2.92	2.74	2.63	2.41						
X"q QUAD. AXIS SUBTRANSIENT	0.36	0.32	0.30	0.27	0.41	0.38	0.37	0.34						
X∟LEAKAGE REACTANCE	0.07	0.06	0.06	0.05	0.08	0.08	0.07	0.07						
X2 NEGATIVE SEQUENCE	0.24	0.22	0.20	0.18	0.28	0.26	0.25	0.23						
X0ZERO SEQUENCE	0.10	0.09	0.08	0.07	0.10	0.09	0.09	0.08						
REACTANCES ARE SATURA	TED	VAL	UES ARE F			ND VOLTA	GE INDICA	TED						
T'd TRANSIENT TIME CONST. T"d SUB-TRANSTIME CONST.)8s 19s									
T'do O.C. FIELD TIME CONST.					7s									
Ta ARMATURE TIME CONST.					18s									
SHORT CIRCUIT RATIO				1/	Xd									

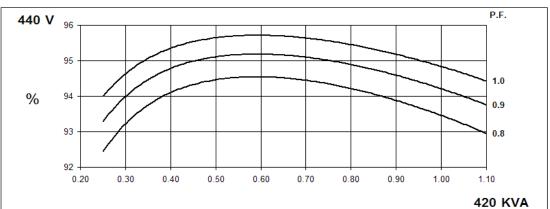

50

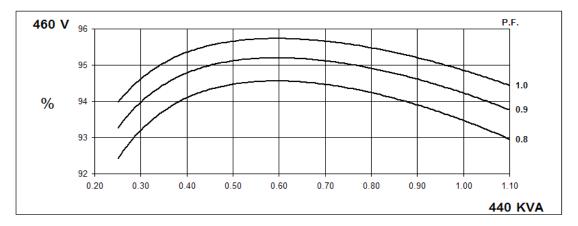

Hz

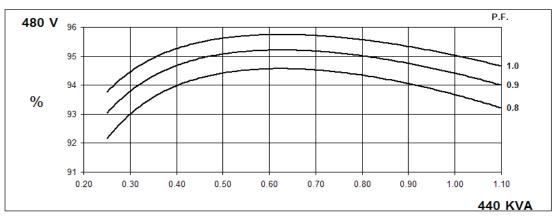

Winding 311

THREE PHASE EFFICIENCY CURVES

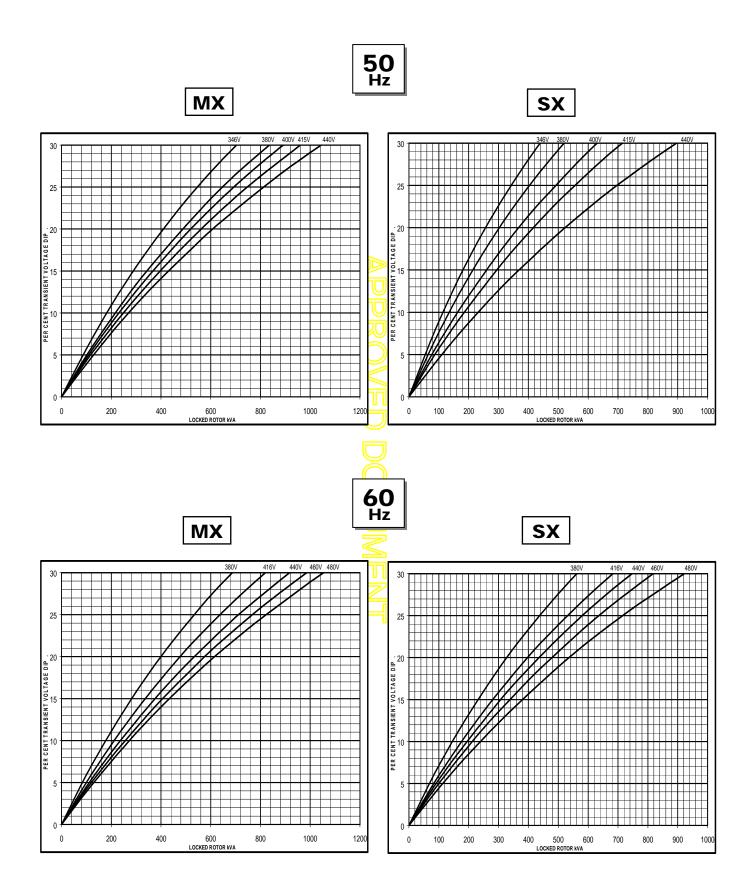


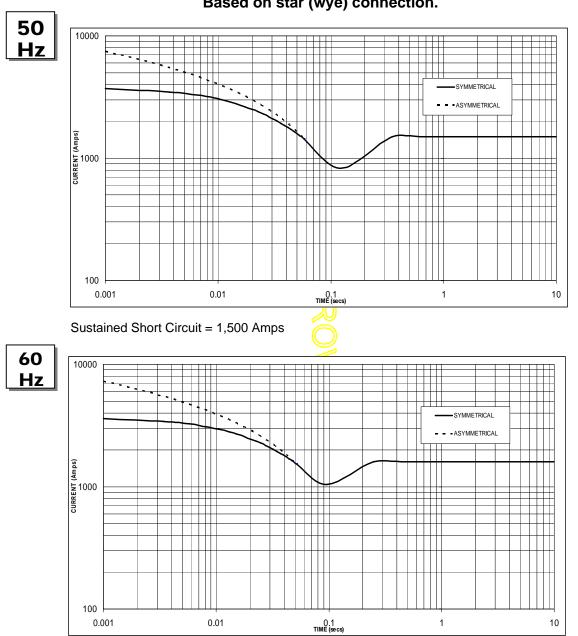

60


Hz


Winding 311

THREE PHASE EFFICIENCY CURVES




Winding 311

Locked Rotor Motor Starting Curve

HCI434E

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 1,600 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

Hz	60Hz						
Factor	Voltage	Factor					
X 1.00	416v	X 1.00					
X 1.05	440v	X 1.06					
X 1.10	460v	X 1.10					
X 1.16	480v	X 1.15					
	X 1.00 X 1.05 X 1.10	Factor Voltage X 1.00 416v X 1.05 440v X 1.10 460v					

The sustained current value is constant irrespective of voltage level

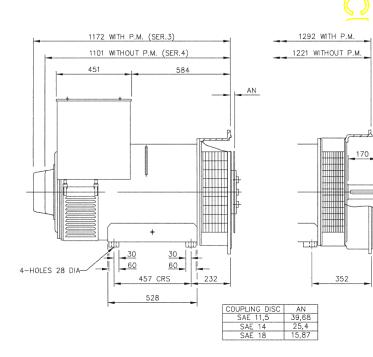
Note 2

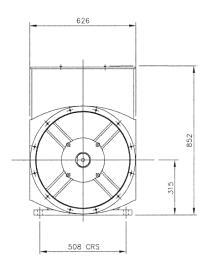
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.
All other time	es are uncha	inged	-

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

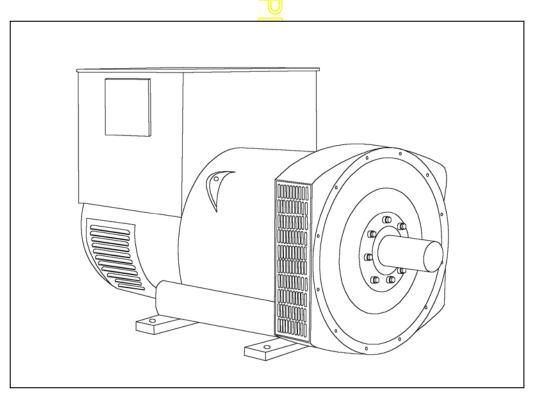

Winding 311 / 0.8 Power Factor


RATI	NGS
------	-----

	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40°C Standby - 150/40°C					°C	Standby - 163/27°C				
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440	
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220	
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254	
	kVA	320	320	320	320	350	350	350	350	370	370	370	370	380	400	380	380	
	kW	256	256	256	256	280	280	280	280	296	296	296	296	304	320	304	304	
	Efficiency (%)	93.6	93.8	94.0	94.1	93.2	93.5	93.6	93.8	92.9	93.2	93.4	93.6	92.7	92.7	93.2	93.5	
	kW Input	274	273	272	272	300	299	299	299	319	318	317	316	328	345	326	325	
						-	1			-				-				
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480	
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240	
112	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277	
	kVA	365	385	400	400	400	420	440	440	420	445	460	460	435	455	475	475	
	kW	292	308	320	320	320	336	352	352	336	356	368	368	348	364	380	380	
	Efficiency (%)	93.8	93.8	93.9	94.0	93.4	93. <mark>5</mark>	93.5	93.7	93.1	93.2	93.2	93.5	92.9	93.0	93.1	93.3	
	kW Input	311	328	341	340	343	359	376	376	361	382	395	394	375	391	408	407	

80,030 80,011

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100


www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

HCI 434F/444F - Winding 311

Technical Data Sheet

HCI434F/444F SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2 100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

AS440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

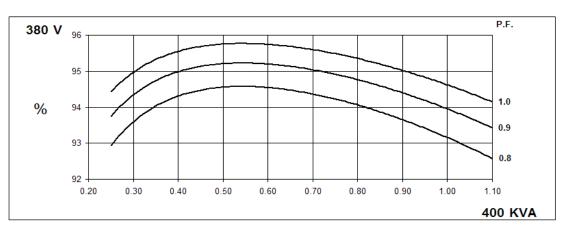
3% for every 5° C by which the operational ambient temperature exceeds 40° C.

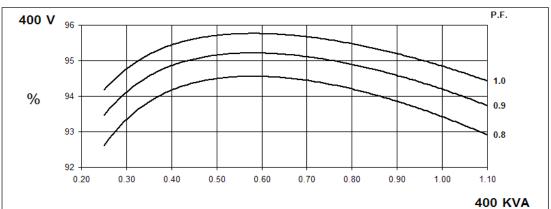
Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

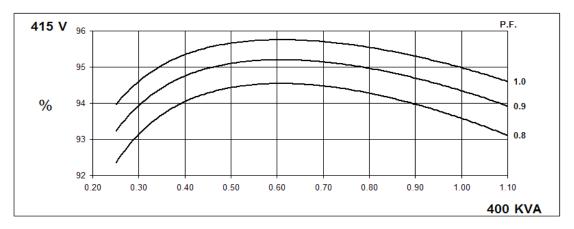
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

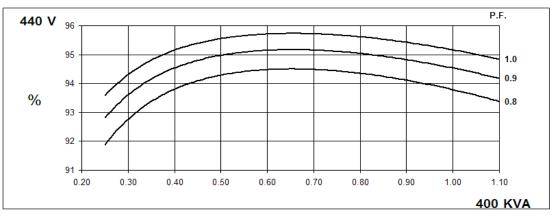
Front cover drawing typical of product range.

WINDING 311

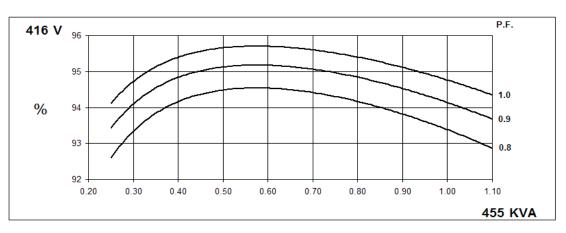

CONTROL SYSTEM			D BY P.M.G	ı.										
A.V.R.	MX321	MX341												
VOLTAGE REGULATION	± 0.5 %		With 4% EN											
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CI	RCUIT DEC	REMENT C	URVES (pag	ge 7)								
CONTROL SYSTEM	SELF EXC	TED												
A.V.R.	AS440													
VOLTAGE REGULATION	± 1.0 %	± 1.0 % With 4% ENGINE GOVERNING												
SUSTAINED SHORT CIRCUIT	WILL NOT	WILL NOT SUSTAIN A SHORT CIRCUIT												
INSULATION SYSTEM		CLASS H												
PROTECTION		IP23												
RATED POWER FACTOR				0	.8									
STATOR WINDING				DOUBLE L	AYER LAP									
				TWO T	HIRDS									
WINDING LEADS				_	2									
		0.0072 0												
STATOR WDG. RESISTANCE		0.0073 0		1.37 Ohm		STAR CON								
ROTOR WDG. RESISTANCE														
EXCITER STATOR RESISTANCE				18 Ohms										
EXCITER ROTOR RESISTANCE			\mathcal{A}		PHASE AT									
R.F.I. SUPPRESSION	BS EN 6	1000-6-2 &	B <mark>S EN</mark> 6100	0-6-4,VDE ()875G, VDE	0875N. refe	er to factory	for others						
WAVEFORM DISTORTION	N	IO LOAD < ´	1.5% NON-I	DISTORTIN	G BALANCE	ED LINEAR	LOAD < 5.0	%						
MAXIMUM OVERSPEED			\leq	2250 F	Rev/Min									
BEARING DRIVE END				BALL. 63	317 (ISO)									
BEARING NON-DRIVE END			\Box	BALL. 63	314 (ISO)									
		1 BEA	ARING			2 BEA	ARING							
WEIGHT COMP. GENERATOR		116	0 kg			116	0 kg							
WEIGHT WOUND STATOR			ō <mark>kg</mark>				5 kg							
			3 kg) kg							
			2 kgm ²				4 kgm ²							
SHIPPING WEIGHTS in a crate PACKING CRATE SIZE			0 kg x 107(cm)		1230 kg 155 x 87 x 107(cm)									
FACKING CRATE SIZE			Hz		60 Hz									
TELEPHONE INTERFERENCE			<2%		TIF<50									
COOLING AIR		0.8 m ³ /sec	: 1700 cfm			0.99 m ³ /se	c 2100 cfm							
VOLTAGE SERIES STAR	380/220	400/231	41 <mark>5</mark> /240	440/254	416/240	440/254	460/266	480/277						
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138						
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138						
kVA BASE RATING FOR REACTANCE VALUES	400	400	400	400	455	480	500	500						
Xd DIR. AXIS SYNCHRONOUS	2.72	2.45	2.28	2.03	3.28	3.09	2.95	2.71						
X'd DIR. AXIS TRANSIENT	0.18	0.16	0.15	0.13	0.18	0.17	0.16	0.15						
X"d DIR. AXIS SUBTRANSIENT	0.13	0.12	0.11	0.10	0.13	0.12	0.12	0.11						
Xq QUAD. AXIS REACTANCE	2.35	2.12	1.97	1.75	2.90	2.73	2.61	2.39						
X"q QUAD. AXIS SUBTRANSIENT	0.31	0.28	0.26	0.23	0.43	0.41	0.39	0.35						
XL LEAKAGE REACTANCE	0.06	0.05	0.05	0.04	0.07	0.07	0.06	0.06						
X2 NEGATIVE SEQUENCE	0.23	0.20	0.19	0.17	0.29	0.27	0.26	0.24						
X0ZERO SEQUENCE	0.08	0.08	0.07	0.06	0.10	0.09	0.09	0.08						
REACTANCES ARE SATURA	TED	VAL	LUES ARE F			ND VOLTA	GE INDICA	ΓED						
T'd TRANSIENT TIME CONST. T"d SUB-TRANSTIME CONST.)8s 19s									
T'do O.C. FIELD TIME CONST.					7s									
Ta ARMATURE TIME CONST.					18s									
SHORT CIRCUIT RATIO				1/	Xd									

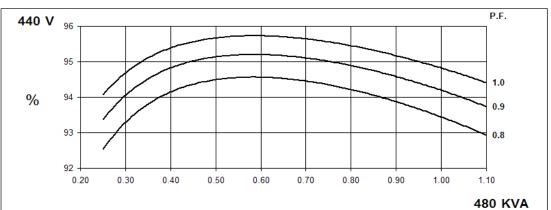

50

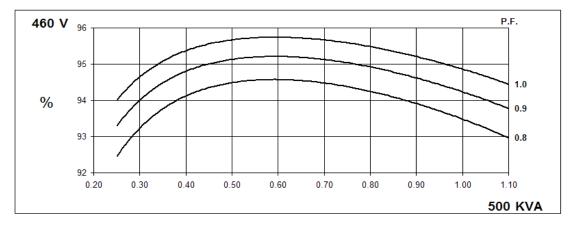

Hz

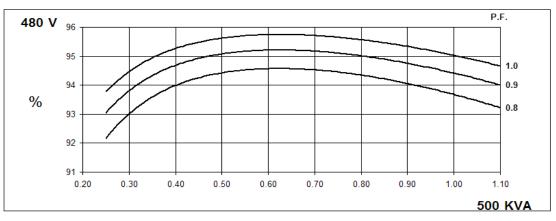

Winding 311

THREE PHASE EFFICIENCY CURVES

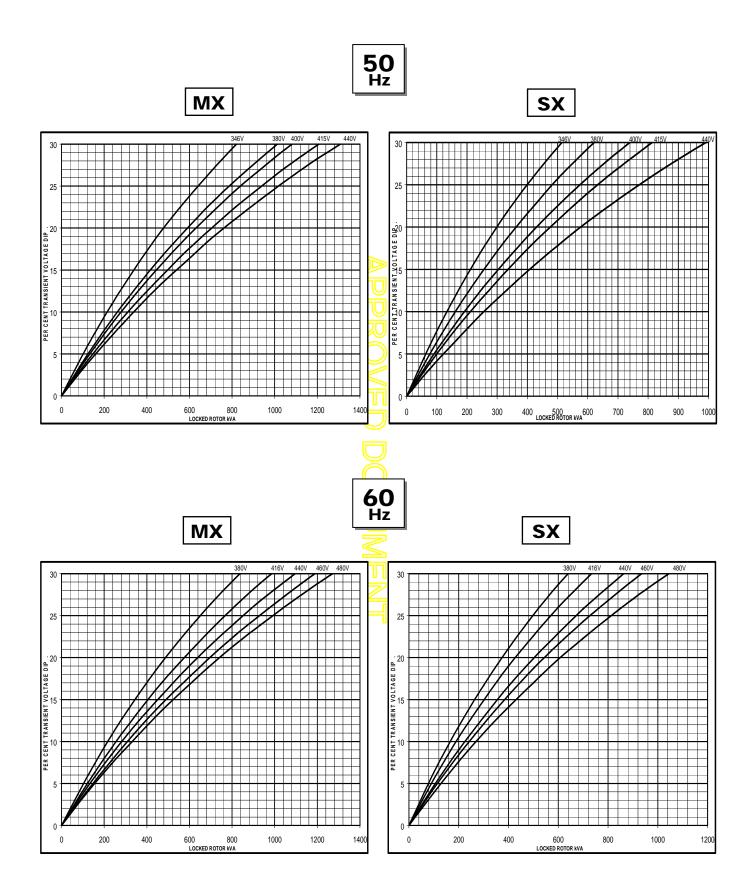


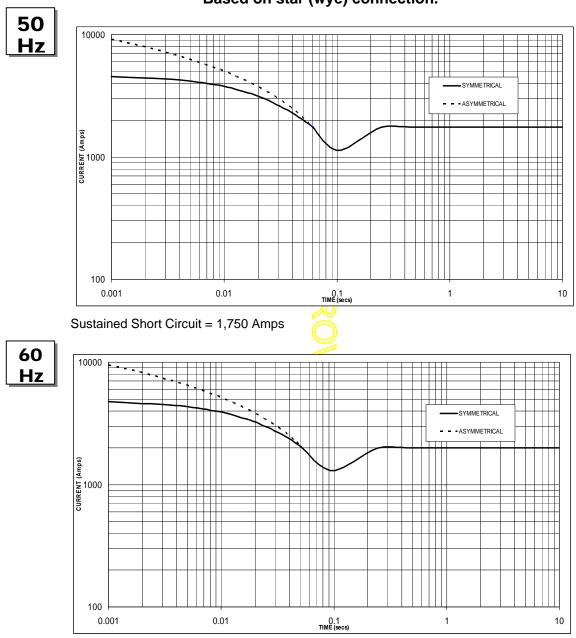

60


Hz


Winding 311

THREE PHASE EFFICIENCY CURVES




Winding 311

Locked Rotor Motor Starting Curve

HCI434F

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz					
Voltage	Factor	Voltage	Factor				
380v	X 1.00	416v	X 1.00				
400v	X 1.05	440v	X 1.06				
415v	X 1.09	460v	X 1.10				
440v	X 1.16	480v	X 1.15				

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

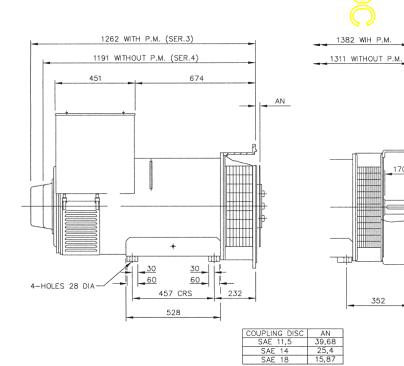
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.
All other tir	nes are uncha	ngod	

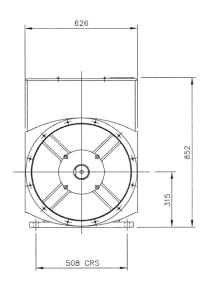
Note 3 All other times are unchanged

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2

Winding 311 / 0.8 Power Factor


RATINGS


	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H - 1	125/40	°C	St	andby -	150/40	°C	Sta	andby -	163/27	°°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	370	370	370	370	400	400	400	400	415	430	430	430	425	450	440	440
	kW	296	296	296	296	320	320	320	320	332	344	344	344	340	360	352	352
	Efficiency (%)	93.5	93.8	93.9	94.0	93.2	93.4	93.6	93.8	92.9	93.0	93.2	93.5	92.8	92.8	93.1	93.4
	kW Input	317	316	315	315	343	343	342	341	357	370	369	368	366	388	378	377
						-	6			-				-			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	420	445	465	465	455	480	500	500	485	515	535	535	500	530	550	550
	kW	336	356	372	372	364	384	400	400	388	412	428	428	400	424	440	440
	Efficiency (%)	93.7	93.8	93.8	94.0	93.4	93. <mark>4</mark>	93.5	93.7	93.1	93.1	93.1	93.4	92.9	92.9	93.0	93.2
	kW Input	359	380	397	396	390	411	428	427	417	443	460	458	431	456	473	472
)									

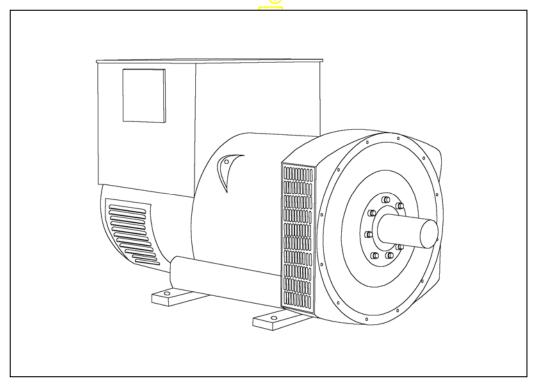
DIMENSIONS

Л 170

30,030 80,011

352

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100


www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

HCI 534C/544C - Winding 311

Technical Data Sheet

HCI534C/544C SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2 100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

AS440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

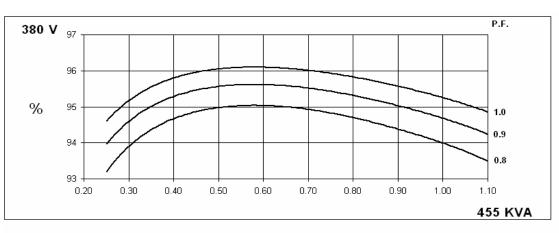
3% for every 5° C by which the operational ambient temperature exceeds 40° C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

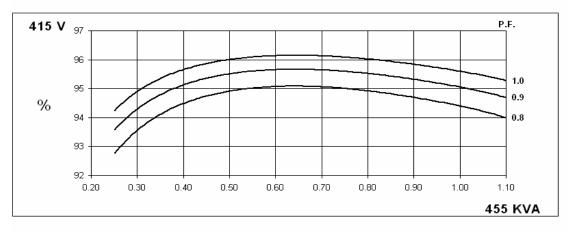
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

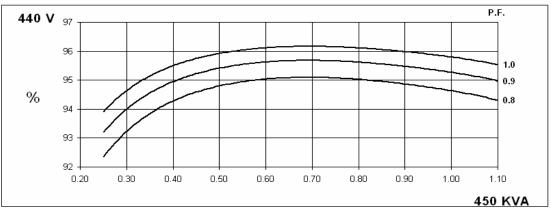
Front cover drawing typical of product range.

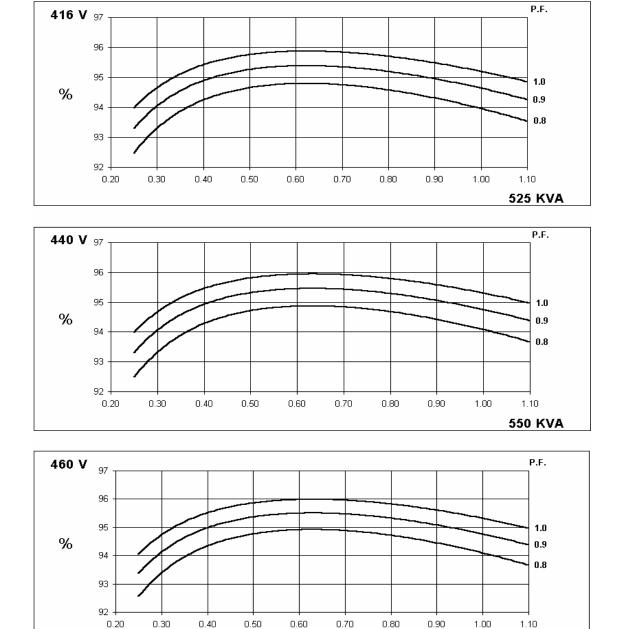
WINDING 311

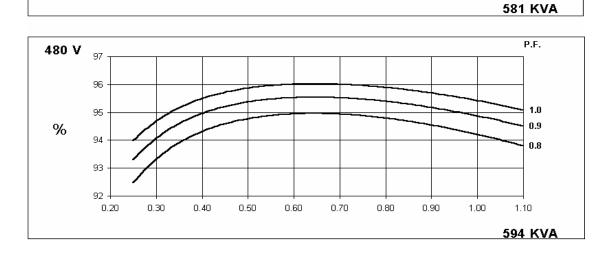

		VVIIN	IDING 31	1						
CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.							
A.V.R.	MX321	MX341								
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	GINE GOVE	RNING					
SUSTAINED SHORT CIRCUIT			CUIT DECRE							
CONTROL SYSTEM	SELF EXCI	TED								
A.V.R.	AS440	AS440								
VOLTAGE REGULATION	± 1.0 %	With 4% EN	GINE GOVE	RNING						
SUSTAINED SHORT CIRCUIT	SERIES 4 CONTROL DOES NOT SUSTAIN A SHORT CIRCUIT CURRENT									
INSULATION SYSTEM				CLAS	20 Ц					
PROTECTION				IP2						
RATED POWER FACTOR				0.	-					
STATOR WINDING				DOUBLE L	-					
WINDING PITCH				TWO T						
WINDING LEADS				1:						
STATOR WDG. RESISTANCE		0.0065 (Dhms PER PI	HASE AT 22°	°C SERIES	STAR CONN	ECTED			
ROTOR WDG. RESISTANCE				1.55 Ohm	s at 22°C					
EXCITER STATOR RESISTANCE				17 Ohms	at 22°C					
EXCITER ROTOR RESISTANCE			0.092	Ohms PER	PHASE AT 2	22°C				
R.F.I. SUPPRESSION	BS EN	61000-6-2 &	BS EN 6100	0-6-4,VDE 0	875G, VDE ()875N. refer t	to factory for	others		
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-	DISTORTING	G BALANCE	D LINEAR LC	DAD < 5.0%			
MAXIMUM OVERSPEED			\leq	2250 R	ev/Min					
BEARING DRIVE END				BALL. 62	20 (ISO)					
BEARING NON-DRIVE END			\Box	BALL. 63	14 (ISO)					
		1 BE/	ARING			2 BEA	RING			
WEIGHT COMP. GENERATOR		126	3 kg			1275 kg				
WEIGHT WOUND STATOR		584	4 <mark>kg</mark>			584	kg			
WEIGHT WOUND ROTOR			2 kg			473	kg			
WR ² INERTIA			8 kgm²			6.6149	-			
SHIPPING WEIGHTS in a crate			5 <mark>kg</mark>			1395	-			
PACKING CRATE SIZE			x 124(cm)			166 x 87 >	()			
			Hz <2%			60 TIE				
TELEPHONE INTERFERENCE			°< <mark>4</mark> 270 ec −2202 cfm		TIF<50 1.312 m³/sec 2780 cfm					
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	1.312 m³/sec 2780 cfm 416/240 440/254 460/266 480/27					
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138		
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138		
kVA BASE RATING FOR REACTANCE	455	500	455	450	525	550	581	594		
VALUES										
Xd DIR. AXIS SYNCHRONOUS	3.30	3.28	2.77	2.44	3.94	3.69	3.57	3.35		
X'd DIR. AXIS TRANSIENT X"d DIR. AXIS SUBTRANSIENT	0.18 0.13	0.18	0.15	0.13	0.18	0.17	0.16	0.15		
X°a DIR. AXIS SUBTRANSIENT Xa QUAD. AXIS REACTANCE	0.13 2.69	0.13	0.11 2.25	1.98	0.13 3.12	0.12 2.92	0.12 2.82	0.11 2.65		
X"q QUAD. AXIS REACTAINCE	0.27	0.26	0.22	0.20	0.34	0.32	0.31	0.29		
XL LEAKAGE REACTANCE	0.27	0.20	0.22	0.20	0.04	0.32	0.07	0.29		
X2 NEGATIVE SEQUENCE	0.19	0.19	0.00	0.03	0.00	0.07	0.07	0.20		
X0 ZERO SEQUENCE	0.13	0.13	0.09	0.08	0.23	0.22	0.21	0.09		
REACTANCES ARE SATURAT			ALUES ARE							
T'd TRANSIENT TIME CONST.				0.0						
T"d SUB-TRANSTIME CONST.		-		0.02		-	-			
T'do O.C. FIELD TIME CONST.	2s									
Ta ARMATURE TIME CONST.	0.017s									
SHORT CIRCUIT RATIO		1/Xd								

50


Hz

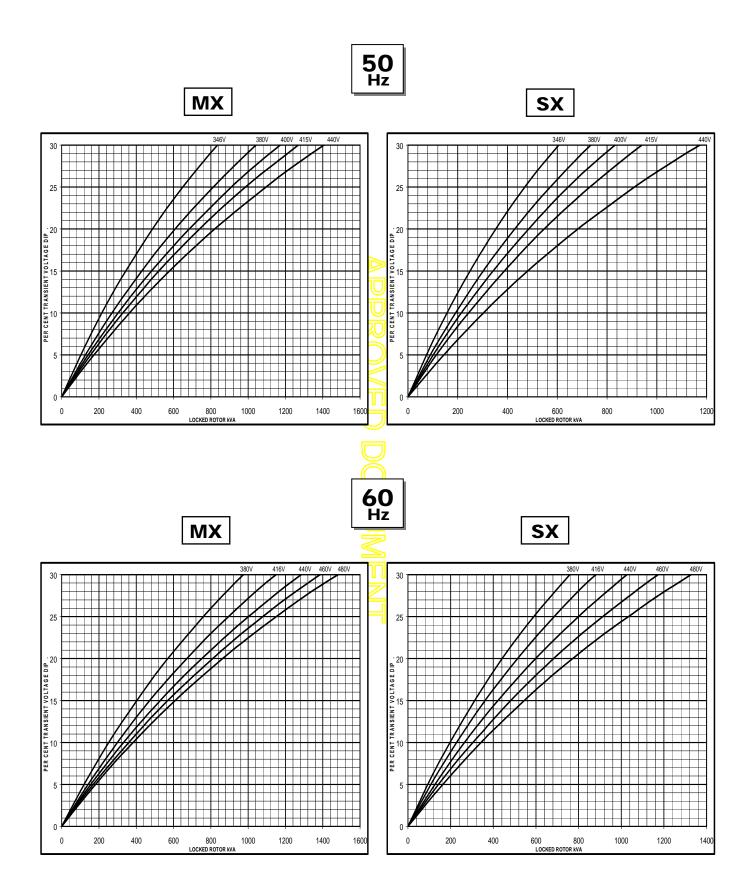

Winding 311

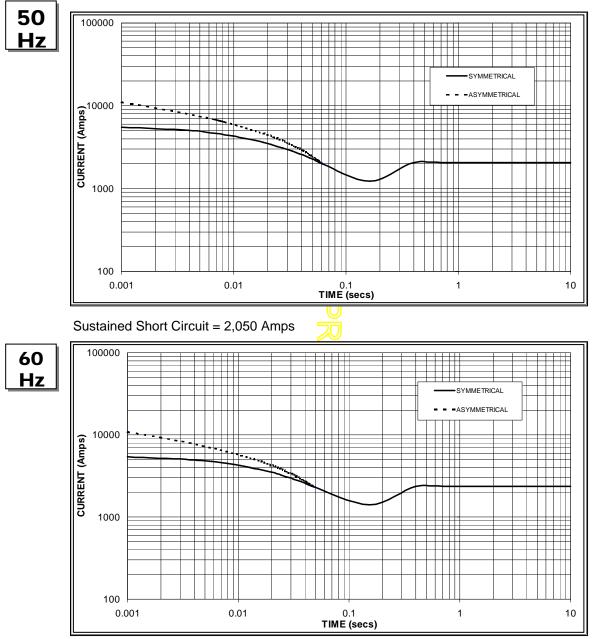

THREE PHASE EFFICIENCY CURVES



60 Hz

HCI534C/544C


Winding 311


THREE PHASE EFFICIENCY CURVES

Winding 311

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 2,350 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz					
Voltage	Factor	Voltage	Factor				
380v	X 1.00	416v	X 1.00				
400v	X 1.03	440v	X 1.06				
415v	X 1.05	460v	X 1.12				
440v	X 1.07	480v	X 1.20				
The sustained surrent value is constant irrespective							

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

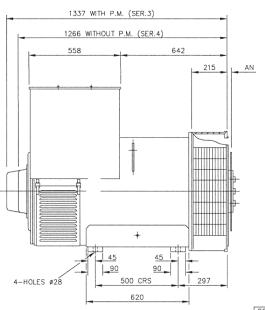
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

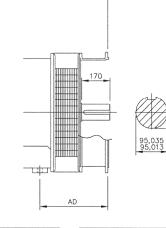
Note 3

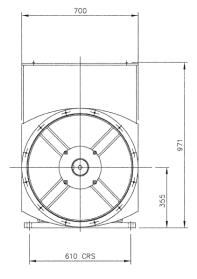
Curves are drawn for Star (Wye) connected machines. For other connections the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732



Winding 311 0.8 Power Factor

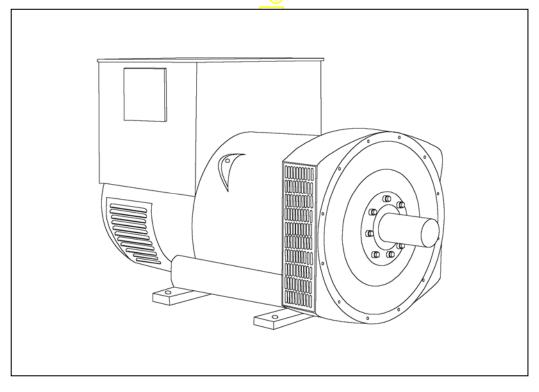

RATINGS


	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	Sta	andby -	163/27	°°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	400	445	400	400	455	500	455	450	478	512	478	478	500	520	500	495
	kW	320	356	320	320	364	400	364	360	382	410	382	382	400	416	400	396
	Efficiency (%)	94.5	94.3	94.8	94.9	94.0	93.8	94.4	94.6	93.8	93.7	94.2	94.4	93.5	93.6	94.0	94.3
	kW Input	339	378	338	337	387	426	386	381	408	437	406	405	428	444	425	420
-							<u>_</u>										
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	481	500	531	538	525	550	581	594	550	581	613	625	569	600	631	644
	kW	385	400	425	430	420	440	465	475	440	465	490	500	455	480	505	515
	Efficiency (%)	94.3	94.4	94.4	94.5	94.0	94.1	94.1	94.2	93.8	93.9	93.9	94.0	93.6	93.7	93.7	93.9
	kW Input	408	424	450	455	447	468	494	504	469	495	522	532	486	512	539	549

DIMENSIONS

1450 (max) WITH P.M. 1379 (max)WITHOUT P.M.

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100


www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

HCI 534D/544D - Winding 311

Technical Data Sheet

HCI534D/544D SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2 100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

AS440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

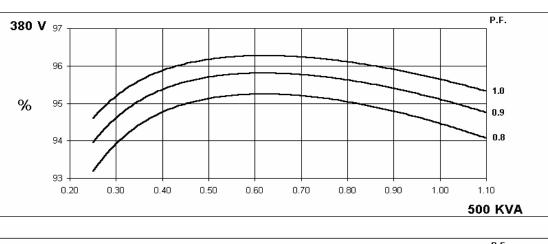
All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5° C by which the operational ambient temperature exceeds 40° C.

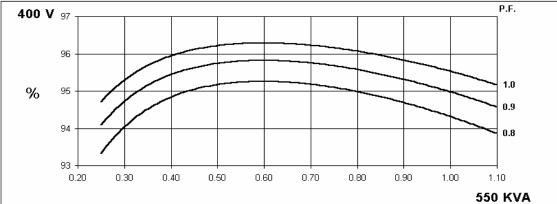
Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

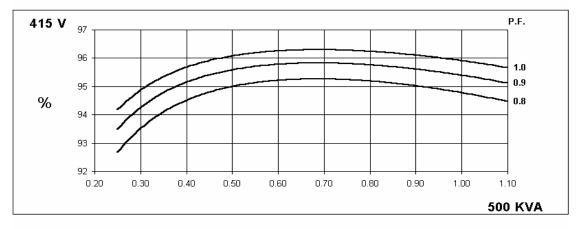

NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

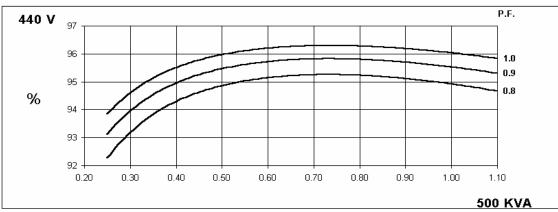
Front cover drawing typical of product range.

WINDING 311

		VVIN	IDING 31	1						
CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.							
A.V.R.	MX321	MX341								
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	RNING						
SUSTAINED SHORT CIRCUIT	REFER TO		L CUIT DECRE	MENT CUR	VES (page 7)					
					- (1-5- /					
CONTROL SYSTEM	SELF EXCI	TED								
A.V.R.	AS440									
VOLTAGE REGULATION	± 1.0 %	With 4% EN	GINE GOVE	RNING						
SUSTAINED SHORT CIRCUIT	SERIES 4 CONTROL DOES NOT SUSTAIN A SHORT CIRCUIT CURRENT									
INSULATION SYSTEM		CLASS H								
PROTECTION				IP2	23					
RATED POWER FACTOR				0.	8					
STATOR WINDING				DOUBLE L	AYER LAP					
WINDING PITCH				TWO T						
WINDING LEADS				1						
		0.0040.0	Dhms PER PI				ECTED			
STATOR WDG. RESISTANCE		0.0049 (ECTED			
ROTOR WDG. RESISTANCE				1.77 Ohm:						
EXCITER STATOR RESISTANCE				17 Ohms						
EXCITER ROTOR RESISTANCE			0.092	2 Ohms PER	PHASE AT 2	22°C				
R.F.I. SUPPRESSION	BS EN	61000-6-2 &	BS EN 6100	0-6-4,VDE 0	875G, VDE (0875N. refer 1	to factory for	others		
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-	DISTORTING	G BALANCE	D LINEAR LO	DAD < 5.0%			
MAXIMUM OVERSPEED				2250 R	ev/Min					
BEARING DRIVE END	BALL. 6220 (ISO)									
BEARING NON-DRIVE END		BALL. 6314 (ISO)								
		1 BE/	ARING			2 BEA	RING			
WEIGHT COMP. GENERATOR		139	13 kg			139	5 kg			
WEIGHT WOUND STATOR		65	7 <mark>kg</mark>			657	' kg			
WEIGHT WOUND ROTOR		563	3 kg			535	kg			
WR ² INERTIA		8.006	8 kgm ²			7.7289) kgm²			
SHIPPING WEIGHTS in a crate		148	5 <mark>kg</mark>			148	-			
PACKING CRATE SIZE			x 124(cm)			166 x 87 >				
			Hz			60				
			-< <mark>2%</mark>		TIF<50					
	000/000	1	ec 2202 cfm	440/054	1.312 m³/sec 2780 cfm					
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277		
VOLTAGE PARALLEL STAR VOLTAGE SERIES DELTA	190/110 220/110	200/115 230/115	208/120 240/120	220/127 254/127	208/120 240/120	220/127 254/127	230/133 266/133	240/138 277/138		
KVA BASE RATING FOR REACTANCE										
VALUES	500	550	500	500	575	594	625	644		
Xd DIR. AXIS SYNCHRONOUS	3.02	2.99	2.53	2.25	3.52	3.25	3.13	2.96		
X'd DIR. AXIS TRANSIENT	0.16	0.15	0.13	0.12	0.17	0.16	0.15	0.14		
X"d DIR. AXIS SUBTRANSIENT	0.11	0.11	0.09	0.08	0.12	0.11	0.11	0.10		
	2.48	2.46	2.08	1.85	2.87	2.65	2.55	2.41		
X"q QUAD. AXIS SUBTRANSIENT	0.27	0.28	0.23	0.20	0.31	0.29	0.28	0.26		
	0.05	0.04	0.04	0.04	0.06	0.06	0.05	0.05		
X2 NEGATIVE SEQUENCE	0.19	0.19	0.16	0.14	0.22	0.20	0.20	0.19		
X0ZERO SEQUENCE	0.10 0.10 0.08 0.07 0.10 0.09 0.09 0.08 RATED VALUES ARE PER UNIT AT RATING AND VOLTAGE INDICATED									
REACTANCES ARE SATURAT		V	ALUES ARE	PER UNIT A 0.0		ND VOLTAG		ט		
IT "d SUB-TRANSTIME CONST.				0.01	125					
T"d SUB-TRANSTIME CONST. T'do O.C. FIELD TIME CONST.				2.2						
					2s					

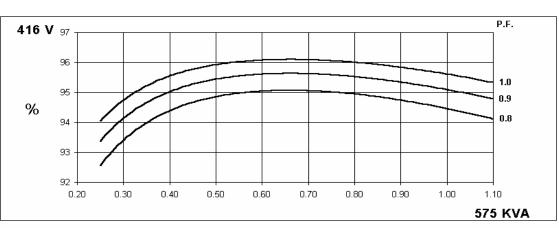

Winding 311

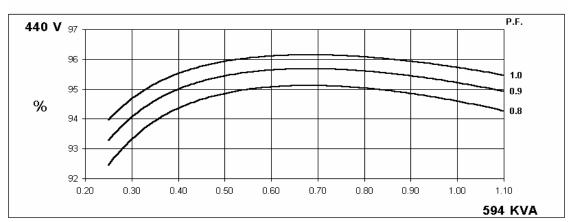

THREE PHASE EFFICIENCY CURVES

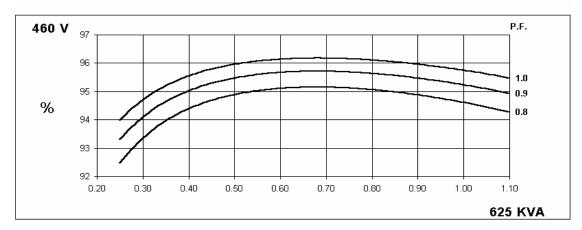

50

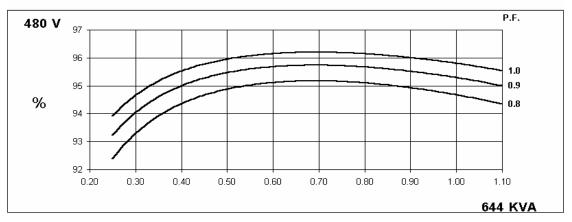
Hz

STAMFORD

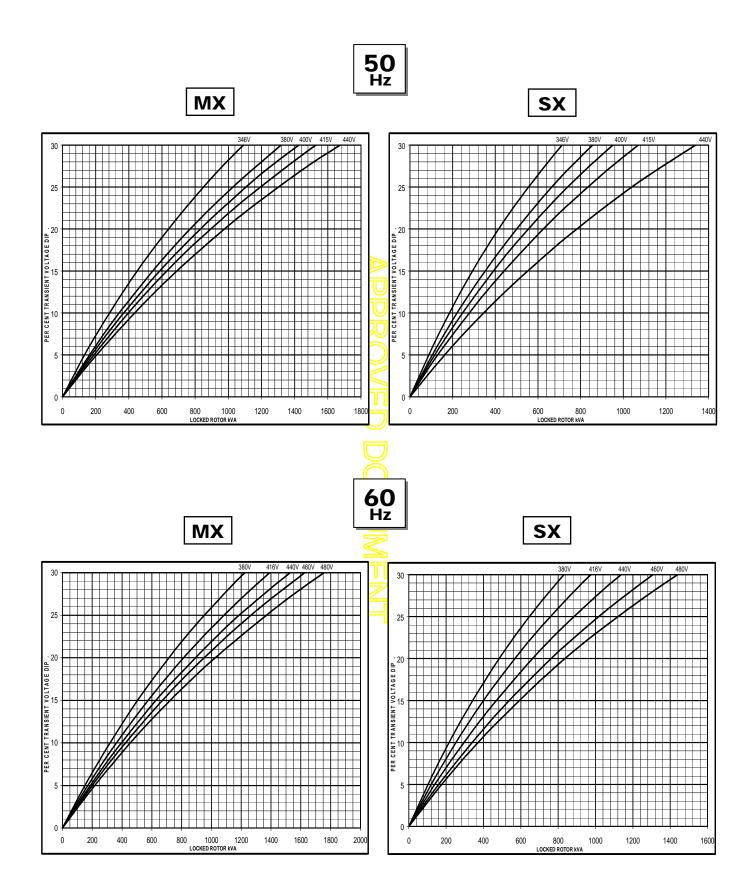


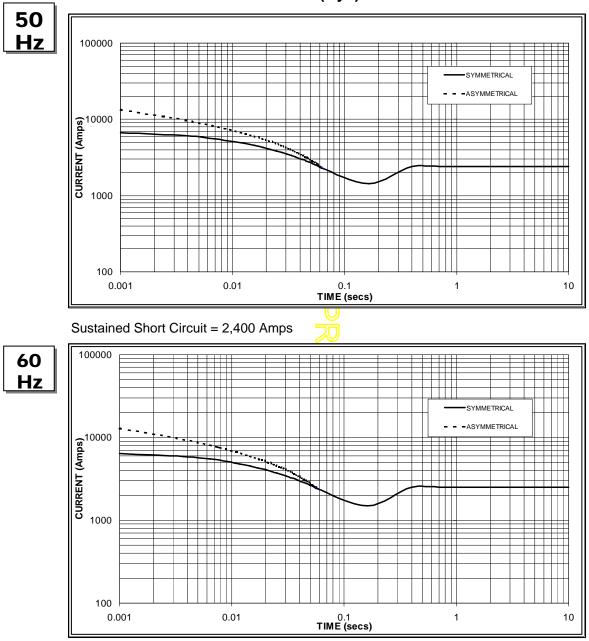

60


Hz


Winding 311

THREE PHASE EFFICIENCY CURVES





Winding 311

Locked Rotor Motor Starting Curve

HCI534D/544D

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 2,500 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60	Hz
Voltage	Factor	Voltage	Factor
380v	X 1.00	416v	X 1.00
400v	X 1.06	440v	X 1.06
415v	X 1.09	460v	X 1.12
440v	X 1.12	480v	X 1.20
The sustains	d current val	uo is constan	t irrocpoctivo

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

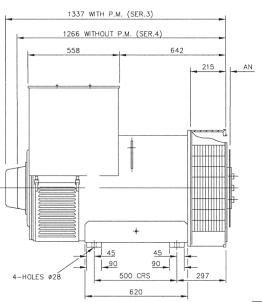
All other times are unchanged

Note 3 Curves are drawn for Star (Wye) connected machines. For other connections the following multipliers should be applied to current values as shown :

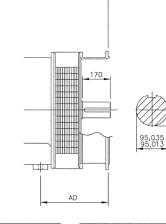
Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732

HCI534D/544D



Winding 311 0.8 Power Factor

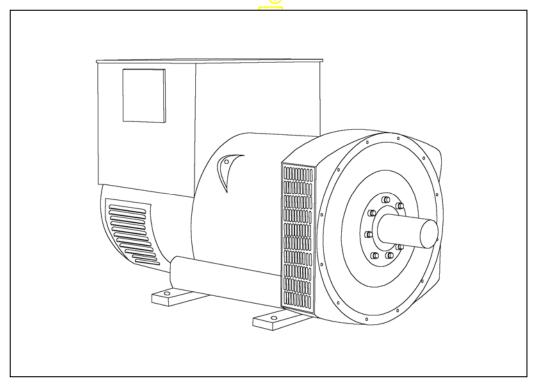

RATINGS


	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	Sta	andby -	163/27	°°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	450	495	450	450	500	550	500	500	515	575	515	515	550	590	550	530
	kW	360	396	360	360	400	440	400	400	412	460	412	412	440	472	440	424
	Efficiency (%)	94.8	94.7	95.0	95.1	94.5	94.3	94.8	94.9	94.4	94.1	94.7	94.9	94.1	94.0	94.5	94.8
	kW Input	380	418	379	379	423	467	422	421	436	489	435	434	468	502	466	447
						-				-				-			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	519	538	563	588	575	594	625	644	588	625	655	675	606	644	673	694
	kW	415	430	450	470	460	475	500	515	470	500	524	540	485	515	538	555
	Efficiency (%)	94.7	94.8	94.9	94.9	94.5	94. <mark>6</mark>	94.6	94.7	94.4	94.4	94.5	94.5	94.3	94.3	94.4	94.4
	kW Input	438	454	475	496	487	502	529	544	498	530	554	571	514	546	570	588

DIMENSIONS

1450 (max) WITH P.M. 1379 (max)WITHOUT P.M.

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100


www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

HCI 534E/544E - Winding 311

Technical Data Sheet

HCI534E/544E SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2 100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

AS440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

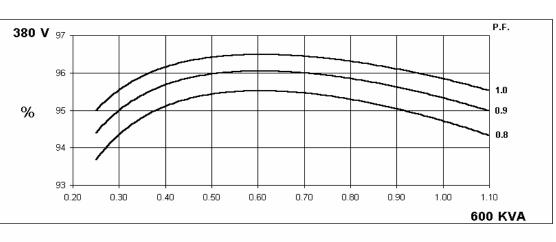
All values tabulated on page 8 are subject to the following reductions

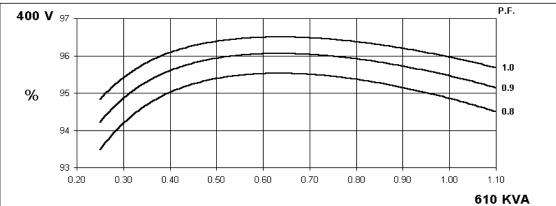
5% when air inlet filters are fitted.

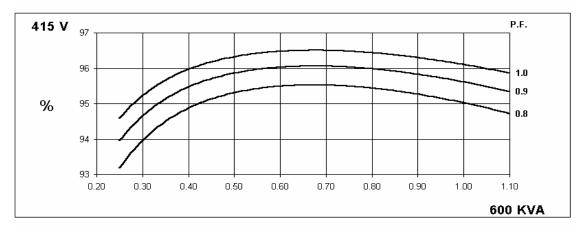
3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

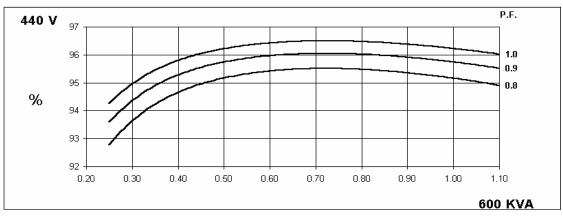
3% for every 5° C by which the operational ambient temperature exceeds 40° C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

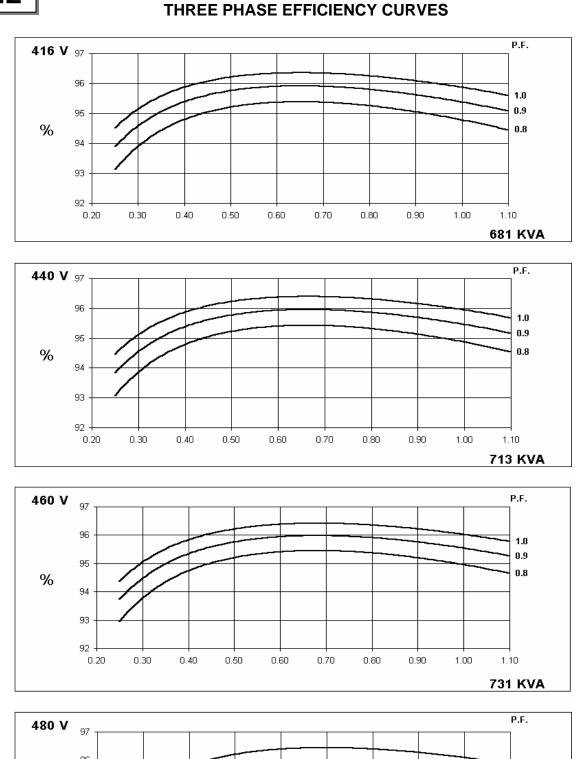

NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.


Front cover drawing typical of product range.




WINDING 311

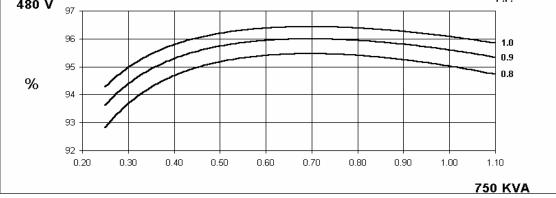
CONTROL SYSTEM	-		PBY P.M.G.											
A.V.R.	MX321	MX341												
VOLTAGE REGULATION	± 0.5 %	± 0.5 % ± 1.0 % With 4% ENGINE GOVERNING FER TO SHORT CIRCUIT DECREMENT CURVES (page 7)												
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIR	CUIT DECRE	MENT CUR	VES (page 7)									
CONTROL SYSTEM	SELF EXCI	TED												
A.V.R.	AS440													
VOLTAGE REGULATION	± 1.0 %	With 4% EN	GINE GOVE	RNING										
SUSTAINED SHORT CIRCUIT	SERIES 4 C	CONTROL DO	DES NOT SU	STAIN A SH	ORT CIRCUI	T CURRENT	-							
INSULATION SYSTEM		CLASS H												
PROTECTION		IP23												
RATED POWER FACTOR		0.8												
STATOR WINDING		0.8 DOUBLE LAYER LAP												
WINDING PITCH				TWO T	HIRDS									
WINDING LEADS				1:	2									
STATOR WDG. RESISTANCE		0 0043 (STAR CONN	ECTED							
		0.0040 (1.96 Ohm			LOILD							
ROTOR WDG. RESISTANCE			<u> </u>	1.96 Onm: 17 Ohms										
EXCITER STATOR RESISTANCE														
EXCITER ROTOR RESISTANCE					PHASE AT 2	-								
R.F.I. SUPPRESSION	BS EN	61000-6-2 &	()					others						
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-			D LINEAR LC	DAD < 5.0%							
MAXIMUM OVERSPEED				2250 R	ev/Min									
BEARING DRIVE END				BALL. 62	20 (ISO)									
BEARING NON-DRIVE END				BALL. 63	14 (ISO)									
			ARING			2 BEA								
WEIGHT COMP. GENERATOR			3 kg			1535	0							
WEIGHT WOUND STATOR WEIGHT WOUND ROTOR			2 kg 7 kg			722 588	0							
WR ² INERTIA			8 kgm ²			8.7049	-							
SHIPPING WEIGHTS in a crate			5 <mark>kg</mark>			1625	U U							
PACKING CRATE SIZE			x 124(cm)			166 x 87 x	(124(cm)							
		50	Hz			60	Hz							
TELEPHONE INTERFERENCE		THF	[:] < <mark>2%</mark>			TIF∢								
COOLING AIR		T	ec 2202 cfm			1.312 m ³ /see	1	1						
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277						
VOLTAGE PARALLEL STAR VOLTAGE SERIES DELTA	190/110	200/115	208/120	220/127 254/127	208/120 240/120	220/127 254/127	230/133	240/138						
kVA BASE RATING FOR REACTANCE	220/110 600	230/115 610	240/120 600	600	681	713	266/133 731	277/138 750						
VALUES														
Xd DIR. AXIS SYNCHRONOUS	3.14	2.88	2.63	2.34	3.53	3.30	3.10	2.92						
X'd DIR. AXIS TRANSIENT	0.17	0.15	0.14	0.12	0.17	0.16	0.15	0.14						
X"d DIR. AXIS SUBTRANSIENT	0.12	0.11	0.10	0.09	0.12	0.11	0.11	0.10						
Xq QUAD. AXIS REACTANCE X"q QUAD. AXIS SUBTRANSIENT	2.45 0.26	2.25	2.05	1.82 0.20	2.82	2.64	2.48	2.33 0.28						
X q QUAD. AXIS SUBTRANSIENT XL LEAKAGE REACTANCE	0.26	0.24	0.22	0.20	0.34	0.32	0.30	0.28						
X2 NEGATIVE SEQUENCE	0.08	0.05	0.05	0.04	0.08	0.00	0.03	0.03						
X0 ZERO SEQUENCE	0.10 0.10 0.10 0.10 0.12 0.12 0.12 0.10 0.08 0.08 0.07 0.06 0.10 0.09 0.09 0.08													
REACTANCES ARE SATURAT			ALUES ARE											
T'd TRANSIENT TIME CONST.				0.0										
T"d SUB-TRANSTIME CONST.				0.01										
				2.5										
Ta ARMATURE TIME CONST. SHORT CIRCUIT RATIO				0.0 ² 1/>										
	1			1/7	(u									



50 Hz STAMFORD

HCI534E/544E Winding 311

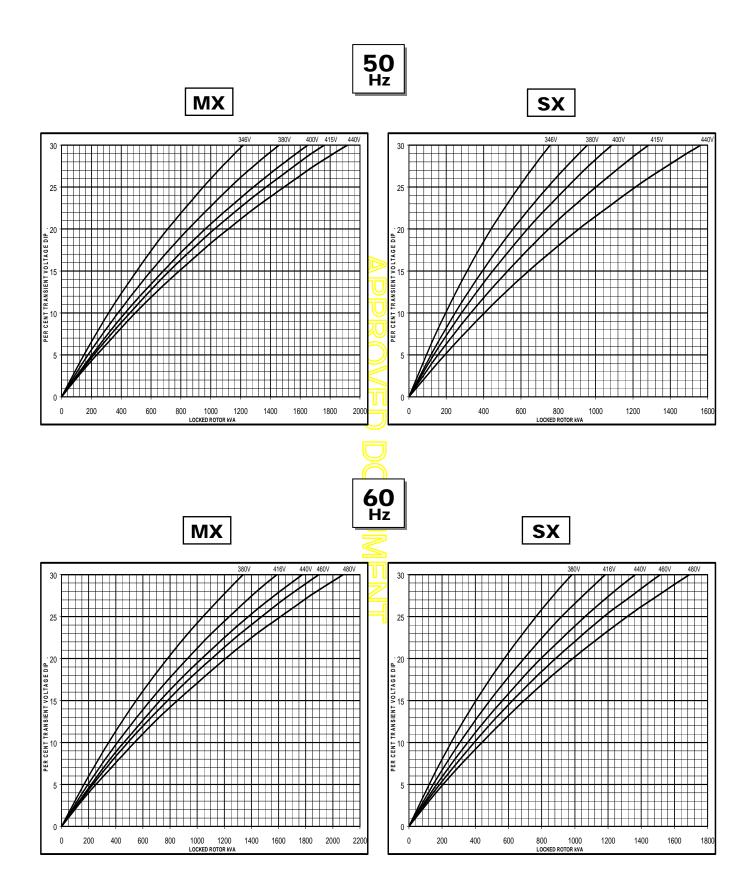
THREE PHASE EFFICIENCY CURVES

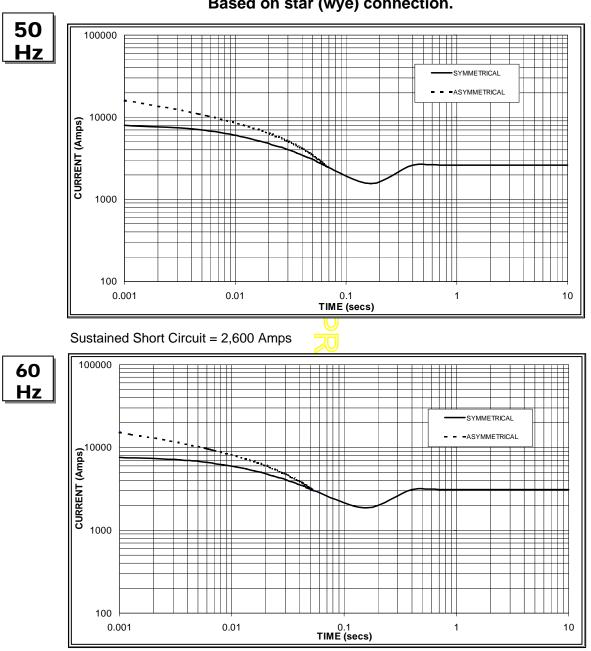


Winding 311

60

Hz


STAMFORD



Winding 311

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 3,100 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60	Hz
Voltage	Factor	Voltage	Factor
380v	X 1.00	416v	X 1.00
400v	X 1.06	440v	X 1.06
415v	X 1.09	460v	X 1.12
440v	X 1.12	480v	X 1.20
The sustaine	d current val	uo is constan	t irrocpoctivo

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

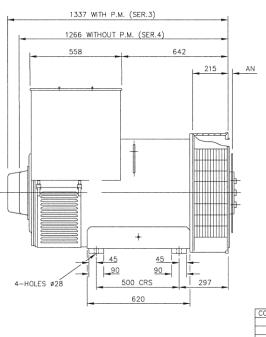
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

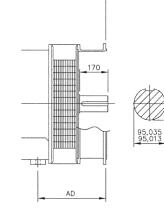
Note 3 Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

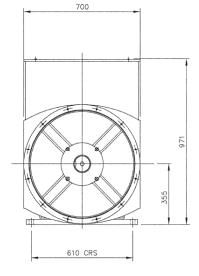
Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732



Winding 311 0.8 Power Factor


RATINGS

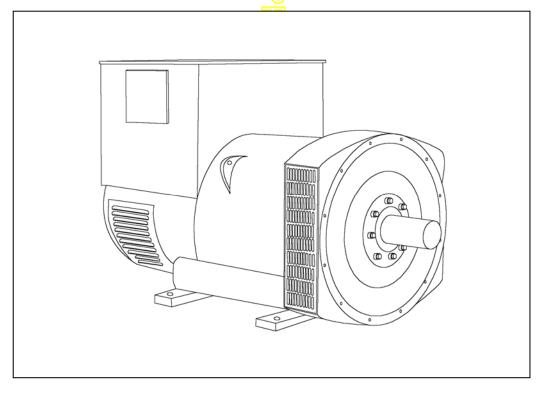

	Class - Temp Rise	С	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	Sta	andby -	163/27	″°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	550	560	550	550	600	610	600	600	636	640	636	636	660	665	660	660
	kW	440	448	440	440	480	488	480	480	509	512	509	509	528	532	528	528
	Efficiency (%)	95.0	95.1	95.2	95.3	94.7	94.9	95.0	95.2	94.5	94.7	94.8	95.0	94.3	94.5	94.7	94.9
	kW Input	463	471	462	462	507	514	505	504	538	541	537	536	560	563	558	556
-						-				-				-			
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
''2	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	625	650	663	675	681	713	731	750	719	750	780	800	738	769	798	819
	kW	500	520	530	540	545	570	585	600	575	600	624	640	590	615	638	655
	Efficiency (%)	95.0	95.1	95.2	95.3	94.8	94.9	95.0	95.0	94.6	94.7	94.8	94.8	94.5	94.6	94.7	94.8
	kW Input	526	547	557	567	575	601	616	632	608	634	658	675	625	650	674	691

DIMENSIONS

1450 (max) WITH P.M. 1379 (max)WITHOUT P.M.

COUPLING DISC	AN	ADAPTOR	AD
SAE 14	25,4	SAE 00	410
SAE 18	15,87	SAE 0	410
SAE 21	0	SAE 1/2	390
		SAE 1	390

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100


www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

HCI 534F/544F - Winding 311

Technical Data Sheet

HCI534F/544F SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2 100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

AS440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

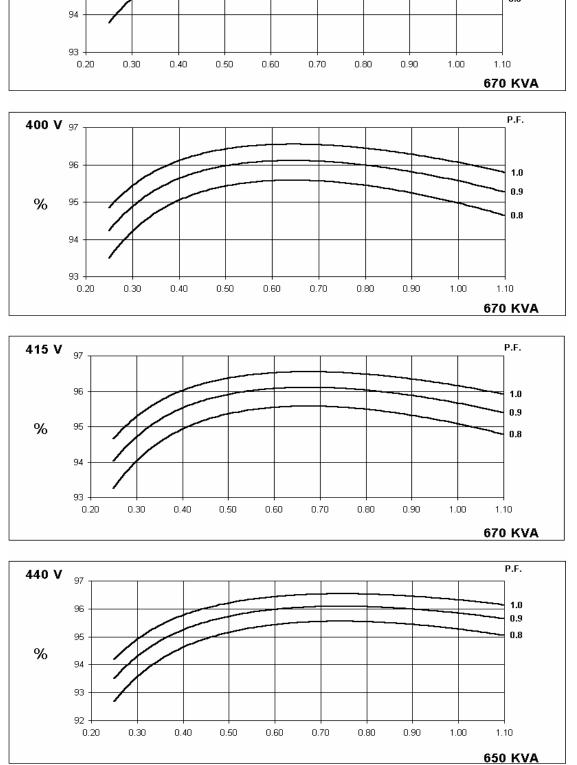
5% when air inlet filters are fitted.

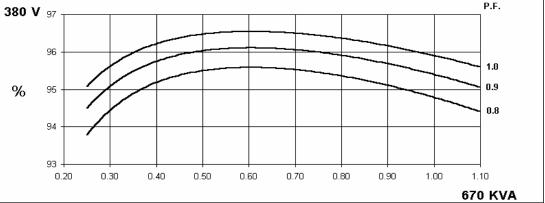
3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

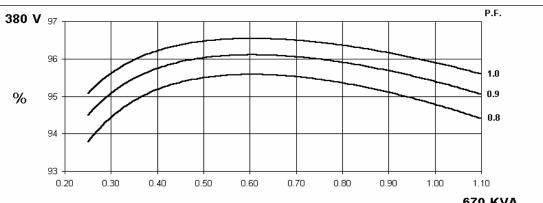
3% for every 5° C by which the operational ambient temperature exceeds 40° C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

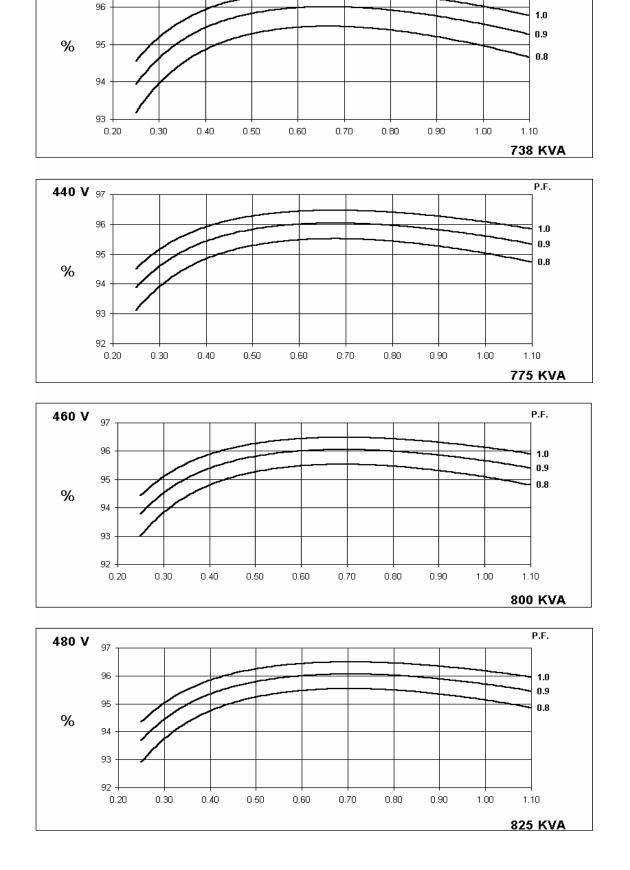

Front cover drawing typical of product range.


HCI534F/544F



WINDING 311

CONTROL SYSTEM				-										
CONTROL SYSTEM	-		BY P.M.G.											
A.V.R.	MX321	MX341												
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN											
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIR	CUIT DECRE	MENT CUR	VES (page 7)									
CONTROL SYSTEM	SELF EXCI	TED												
A.V.R.	AS440													
VOLTAGE REGULATION	± 1.0 %	With 4% EN	GINE GOVE	RNING										
SUSTAINED SHORT CIRCUIT	SERIES 4 C	RIES 4 CONTROL DOES NOT SUSTAIN A SHORT CIRCUIT CURRENT												
INSULATION SYSTEM		CLASS H												
PROTECTION		IP23												
RATED POWER FACTOR		0.8												
STATOR WINDING		0.8 DOUBLE LAYER LAP												
				TWO T										
				-	-									
		12 0.0037 Ohms PER PHASE AT 22°C SERIES STAR CONNECTED												
STATOR WDG. RESISTANCE		0.0037 (STAR CONN	ECTED							
ROTOR WDG. RESISTANCE				2.16 Ohm										
EXCITER STATOR RESISTANCE				17 Ohms										
EXCITER ROTOR RESISTANCE			0.092	2 Ohms PER	PHASE AT 2	22°C								
R.F.I. SUPPRESSION	BS EN	61000-6-2 &	BS EN 6100	0-6-4,VDE 0	875G, VDE (0875N. refer 1	to factory for	others						
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-	DISTORTING	G BALANCE	D LINEAR LO	DAD < 5.0%							
MAXIMUM OVERSPEED				2250 R	ev/Min									
BEARING DRIVE END				BALL. 62	20 (ISO)									
BEARING NON-DRIVE END			\Box	BALL. 63	14 (ISO)									
		1 BE/	ARING			2 BEA	RING							
WEIGHT COMP. GENERATOR		168	5 kg			1694	4 kg							
WEIGHT WOUND STATOR			5 kg			805	-							
WEIGHT WOUND ROTOR			4 kg			655	-							
			3 kgm²			9.7551	-							
SHIPPING WEIGHTS in a crate PACKING CRATE SIZE			'5 <mark>kg</mark> x 124(cm)			178 166 x 87 x	-							
FACKING CRATE SIZE			Hz			60	()							
TELEPHONE INTERFERENCE			<2%			TIF								
COOLING AIR			ec 2202 cfm			1.312 m ³ /se								
VOLTAGE SERIES STAR	380/220	400/231	41 <mark>5</mark> /240	440/254	416/240	440/254	460/266	480/277						
VOLTAGE PARALLEL STAR	190/110	200/115	20 <mark>8</mark> /120	220/127	208/120	220/127	230/133	240/138						
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138						
kVA BASE RATING FOR REACTANCE	670	670	670	650	738	775	800	825						
Xd DIR. AXIS SYNCHRONOUS	2.90	2.62	2.43	2.10	3.33	3.13	2.95	2.80						
X'd DIR. AXIS TRANSIENT	0.16	0.14	0.13	0.11	0.16	0.15	0.14	0.13						
X"d DIR. AXIS SUBTRANSIENT	0.11	0.10	0.09	0.08	0.11	0.10	0.10	0.09						
Xq QUAD. AXIS REACTANCE	2.42	2.19	2.03	1.75	2.66	2.50	2.36	2.23						
X"q QUAD. AXIS SUBTRANSIENT	0.25	0.23	0.21	0.18	0.31	0.29	0.27	0.26						
XL LEAKAGE REACTANCE	0.05	0.04	0.04	0.03	0.05	0.05	0.04	0.04						
X2 NEGATIVE SEQUENCE	0.18 0.16 0.15 0.13 0.21 0.20 0.19 0.18													
X0ZERO SEQUENCE	0.08	0.08	0.07	0.06	0.09	0.08	0.08	0.08						
REACTANCES ARE SATURAT	TED	V	ALUES ARE			ND VOLTAG	E INDICATE	D						
T'd TRANSIENT TIME CONST. T"d SUB-TRANSTIME CONST.				0.0										
T'do O.C. FIELD TIME CONST.				2.5										
Ta ARMATURE TIME CONST.				0.0										
SHORT CIRCUIT RATIO				1/>	Kd									



Winding 311

STAMFORD

THREE PHASE EFFICIENCY CURVES

THREE PHASE EFFICIENCY CURVES

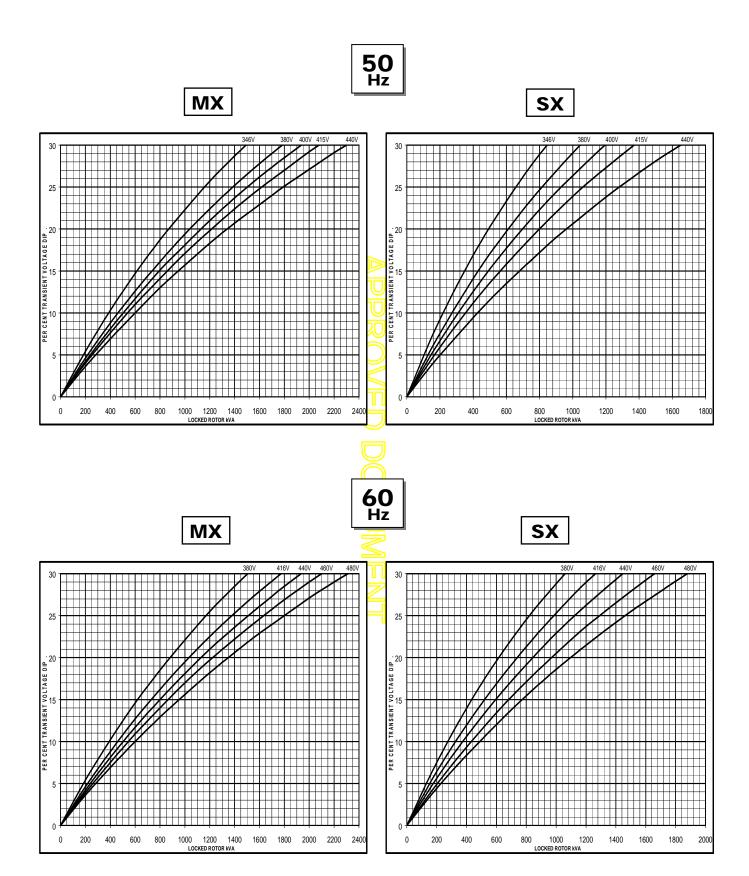
HCI534F/544F

Winding 311

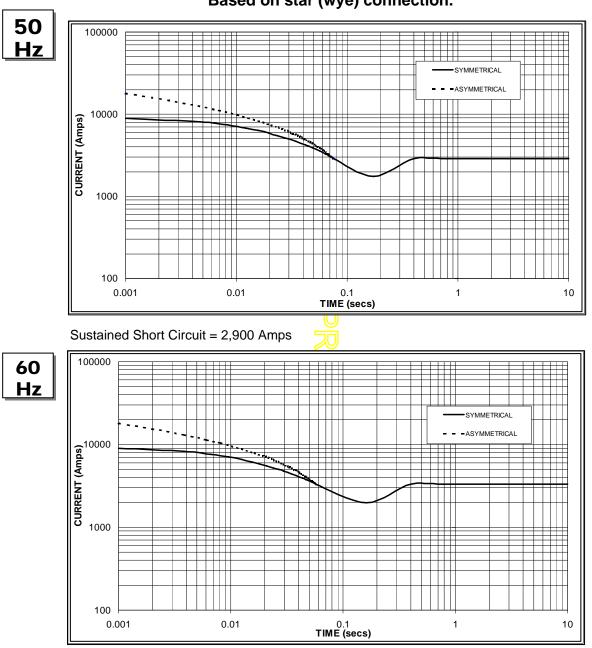
STAMFORD

P.F.

60 Hz


416 V 97

HCI534F/544F



Winding 311

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 3,300 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60	Hz
Voltage	Factor	Voltage	Factor
380v	X 1.00	416v	X 1.00
400v	X 1.06	440v	X 1.06
415v	X 1.09	460v	X 1.12
440v	X 1.12	480v	X 1.20
The sustains	d current val	ua is constan	t irrespective

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

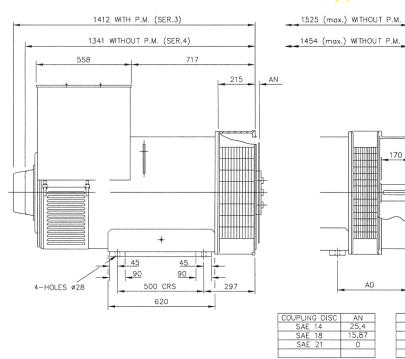
All other times are unchanged

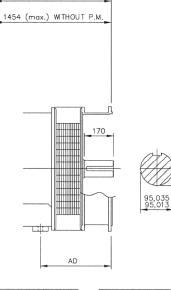
Note 3 Curves are drawn for Star (Wye) connected machines. For other connections the following multipliers should be applied to current values as shown :

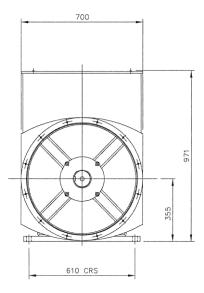
Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732

HCI534F/544F



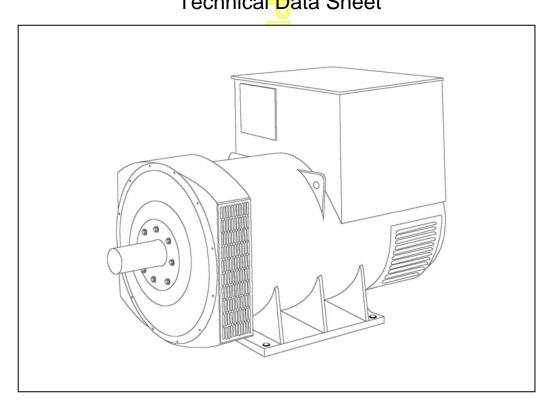

Winding 311 0.8 Power Factor


RATINGS

	Class - Temp Rise	С	ont. F -	105/40	°C	Co	ont. H - '	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	°°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	620	620	620	600	670	670	670	650	710	710	710	690	738	738	738	715
	kW	496	496	496	480	536	536	536	520	568	568	568	552	590	590	590	572
	Efficiency (%)	95.0	95.2	95.3	95.4	94.8	95.0	95.1	95.3	94.6	94.8	94.9	95.1	94.4	94.6	94.8	95.1
	kW Input	522	521	520	503	565	564	564	546	600	599	599	580	625	624	623	601
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	688	719	731	750	738	775	800	825	781	819	848	875	806	844	878	906
	kW	550	575	585	600	590	620	640	660	625	655	678	700	645	675	702	725
	Efficiency (%)	95.1	95.2	95.3	95.3	95.0	95. <mark>0</mark>	95.1	95.1	94.8	94.9	94.9	95.0	94.7	94.8	94.8	94.9
	kW Input	579	604	614	630	621	653	673	694	659	690	715	737	681	712	741	764
								J									

DIMENSIONS

OUPLING DISC	AN	ADAPTOR	AD
SAE 14	25,4	SAE 00	410
SAE 18	15,87	SAE 0	410
SAE 21	0	SAE 1/2	390
		SAE 1	390


Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

HCI634G - Winding 311 and 312 Technical Data Sheet

HCI634G

SPECIFICATIONS & OPTIONS WINDING 311 and 312

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

MX321 AVR - STANDARD

This sophisticated Automatic Voltage Regulator (AVR) is incorporated into the Stamford Permanent Magnet Generator (PMG) system and is fitted as standard to generators of this type.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with either 6 ends (Winding 312) or 12 ends (Winding 311) brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

10% when IP44 Filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level. 3% for every 5°C by which the operational ambient temperature exceeds 40°C.

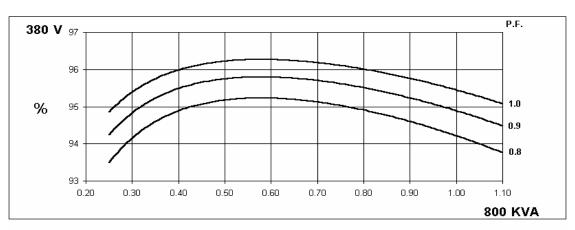
Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

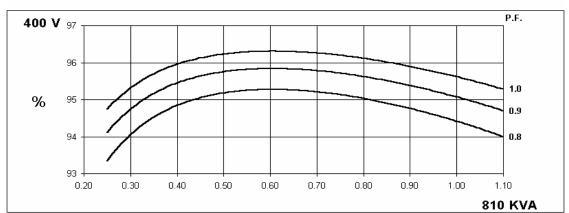
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

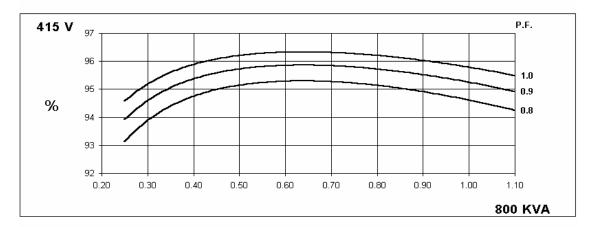
Front cover drawing typical of product range.

HCI634G

WINDING 311 and 312

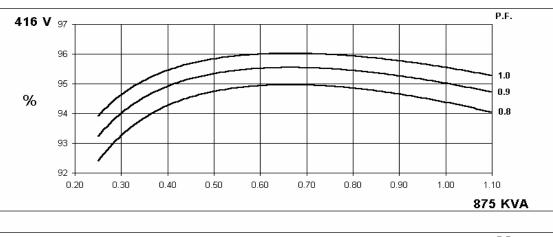

CONTROL SYSTEM	SEPARATELY EXCITED BY P.M.G.											
A.V.R.	MX321	MX321										
VOLTAGE REGULATION	± 0.5 % With 4% ENGINE GOVERNING											
SUSTAINED SHORT CIRCUIT	REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)											
INSULATION SYSTEM				CLAS	SS H							
PROTECTION		IP23										
RATED POWER FACTOR		0.8										
STATOR WINDING		DOUBLE LAYER LAP										
WINDING PITCH		TWO THIRDS										
WINDING LEADS			6.		12 (Wdg 31	1)						
STATOR WDG. RESISTANCE		0.0			、 U		=D					
ROTOR WDG. RESISTANCE		0.0		1.75 Ohm		CONNECT						
EXCITER STATOR RESISTANCE				17 Ohms								
EXCITER ROTOR RESISTANCE			0.079	Ohms PER	PHASE AT 2	22°C						
R.F.I. SUPPRESSION	BS EN	61000-6-2 &	BS EN 6100	0-6-4,VDE 0	875G, VDE 0	875N. refer t	o factory for	others				
WAVEFORM DISTORTION		NO LOAD <	1.5 <mark>%/</mark> NON-	DISTORTING	G BALANCE	D LINEAR LC	AD < 5.0%					
MAXIMUM OVERSPEED			20	2250 R	ev/Min							
BEARING DRIVE END			\bigcirc	BALL. 62	24 (ISO)							
BEARING NON-DRIVE END			$\overline{\langle}$	BALL. 63	17 (ISO)							
		1 BEA				2 BEA	RING					
WEIGHT COMP. GENERATOR		196	5 kg]			1989) kg					
WEIGHT WOUND STATOR			4 kg			934	0					
WEIGHT WOUND ROTOR			1 kg		766 kg							
					17.8009 kgm ²							
			2 kgm ²		-							
SHIPPING WEIGHTS in a crate			23kg)		2029kg 183 x 92 x 140(cm)							
PACKING CRATE SIZE		183 x 92 x										
			Hz			60						
TELEPHONE INTERFERENCE		THF	<2%		TIF<50							
COOLING AIR		1.614 m ³ /se	ec 3420 cfm		1.961 m ³ /sec 4156 cfm							
VOLTAGE STAR	380/220	400/231	<mark>415/</mark> 240	440/254	416/240	440/254	460/266	480/277				
VOLTAGE PARALLEL STAR (*)	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138				
VOLTAGE DELTA	220	230	240	254	240	254	266	277				
KVA BASE RATING FOR REACTANCE VALUES	800	800	800	800	875	925	963	1000				
Xd DIR. AXIS SYNCHRONOUS	3.14	2.83	2.63	2.34	3.53	3.34	3.18	3.03				
X'd DIR. AXIS TRANSIENT	0.25	0.23	0.21	0.19	0.28	0.26	0.25	0.24				
X"d DIR. AXIS SUBTRANSIENT	0.18	0.16	0.15	0.13	0.21	0.20	0.19	0.18				
Xq QUAD. AXIS REACTANCE	1.88	1.70	1.58	1.40	2.10	1.98	1.89	1.80				
X"q QUAD. AXIS SUBTRANSIENT XL LEAKAGE REACTANCE	0.21	0.19	0.18	0.16	0.24	0.23	0.22	0.21				
X2 NEGATIVE SEQUENCE	0.10	0.09	0.08	0.07	0.12	0.11	0.10	0.10				
X0 ZERO SEQUENCE	0.03	0.03	0.03	0.02	0.03	0.03	0.03	0.03				
REACTANCES ARE SATURA	1					ND VOLTAGI						
T'd TRANSIENT TIME CONST.				0.1		_						
T"d SUB-TRANSTIME CONST.				0.0								
T'do O.C. FIELD TIME CONST.	2.35											
Ta ARMATURE TIME CONST. SHORT CIRCUIT RATIO				0.0 1/>								
(*) Parallel Star connection only availa	Lable with W/de	1311		177								

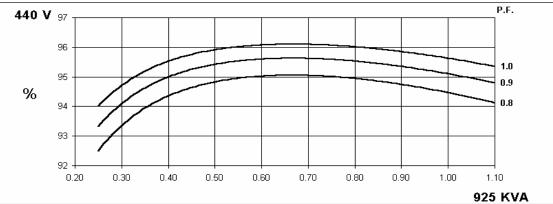

(*) Parallel Star connection only available with Wdg 311

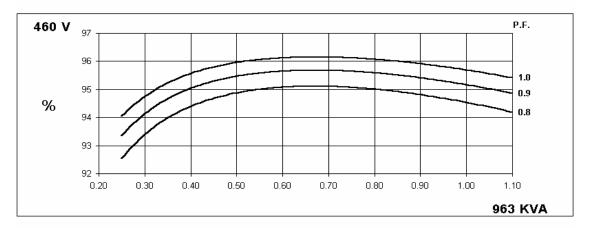


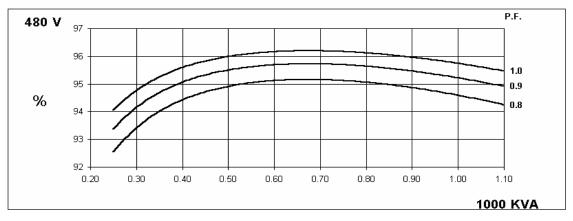

HCI634G WINDING 311 and 312

THREE PHASE EFFICIENCY CURVES

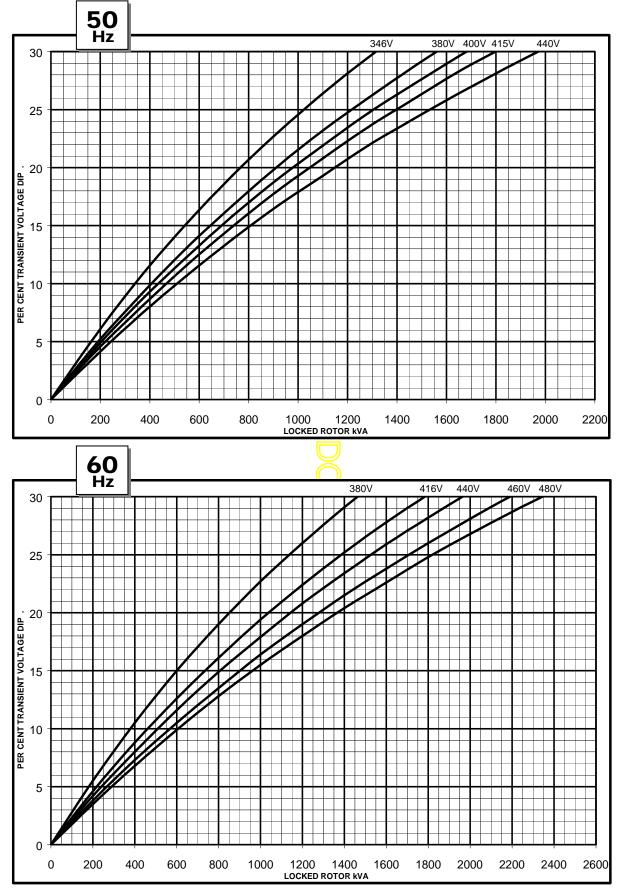

WINDING 311 and 312


60

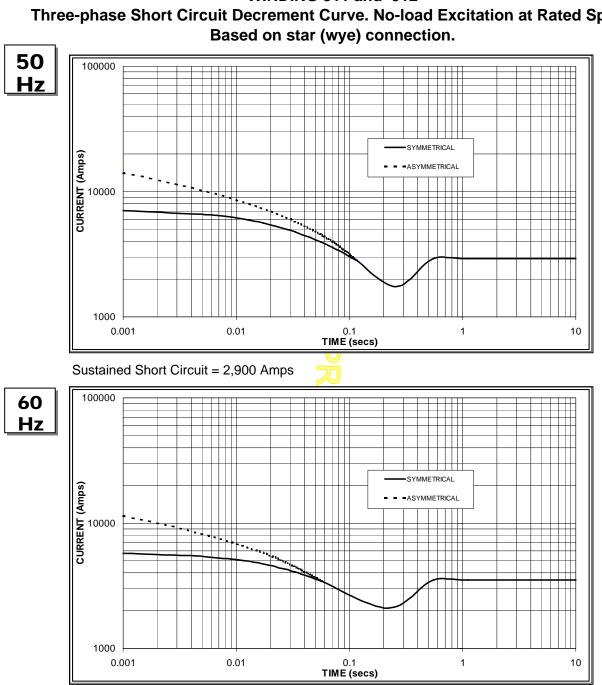

Hz


HCI634G

THREE PHASE EFFICIENCY CURVES



STAMFORD


HCI634G

WINDING 311 and 312

Locked Rotor Motor Starting Curve

HCI634G

WINDING 311 and 312 Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed

Sustained Short Circuit = 3,500 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	X 1.00	416v	x 1.00			
400v	X 1.07	440v	x 1.06			
415v	X 1.12	460v	x 1.12			
440v	X 1.18	480v	x 1.17			
The sustaine	d current val	ua is constan	t irrespective			

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

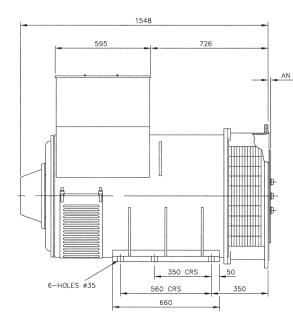
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

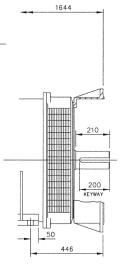
All other times are unchanged

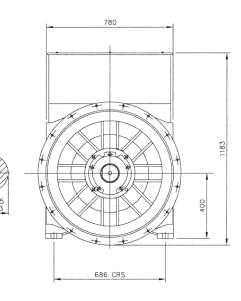
Note 3

Curves are drawn for Star (Wye) connected machines. For Delta connection multiply the Curve current value by 1.732

HCI634G


Winding 311 and 312 0.8 Power Factor

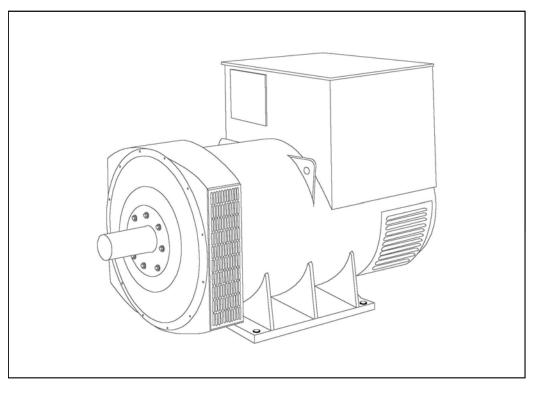

RATINGS


Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	″°C
50Hz Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Parallel Star (V) *	180	200	208	220	180	200	208	220	180	200	208	220	180	200	208	220
Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
kVA	750	760	750	750	800	810	800	800	825	830	825	820	850	860	850	850
kW	600	608	600	600	640	648	640	640	660	664	660	656	680	688	680	680
Efficiency (%)	94.5	94.6	94.8	95.0	94.2	94.4	94.6	94.8	94.1	94.3	94.5	94.7	93.9	94.2	94.4	94.6
kW Input	635	643	633	632	679	686	677	675	702	704	698	693	724	730	720	719
									1							
60Hz Star (V)	416	440	460	480	416	440	460 >	480	416	440	460	480	416	440	460	480
Parallel Star (V) *	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
kVA	813	844	888	913	875	925	963	1000	913	969	1008	1046	950	1000	1044	1088
kW	650	675	710	730	700	740	770	800	730	775	806	837	760	800	835	870
Efficiency (%)	94.6	94.7	94.8	94.8	94.4	94.5	94.5	94.6	94.2	94.3	94.4	94.4	94.1	94.2	94.3	94.3
kW Input	688	713	749	770	742	78 <mark>3</mark>	815	846	775	822	854	886	808	849	886	923

* Parallel Star only available with Wdg 311

SAE	14	18	21	24
AN	25.4	15.87	0	0

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100


www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

HCI634H - Winding 311 and 312

Technical Data Sheet

HCI634H

SPECIFICATIONS & OPTIONS WINDING 311 and 312

WINDING 311 and 312

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

MX321 AVR - STANDARD

This sophisticated Automatic Voltage Regulator (AVR) is incorporated into the Stamford Permanent Magnet Generator (PMG) system and is fitted as standard to generators of this type.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with either 6 ends (Winding 312) or 12 ends (Winding 311) brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'. All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

10% when IP44 Filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level. 3% for every 5 C by which the operational ambient temperature exceeds 40 C.

Note: Requirement for operating in an ambient exceeding 60 C must be referred to the factory.

NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

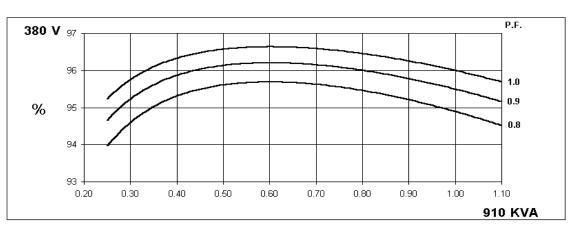
Front cover drawing typical of product range.

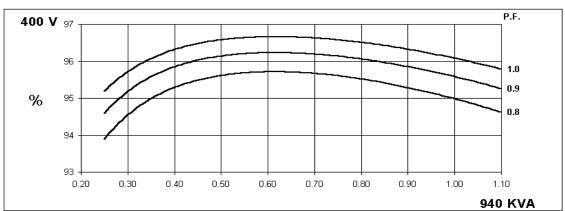
HCI634H

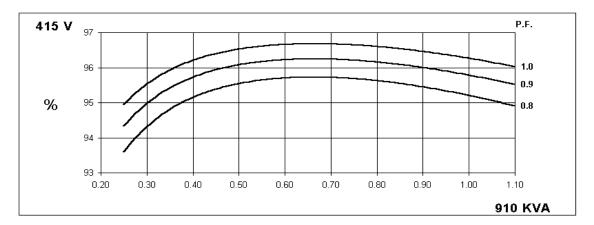
WINDING 311 and 312

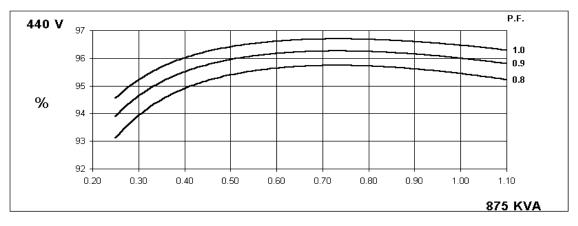
		WINDIN	G 311 ai	nd 312							
CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.								
A.V.R.	MX321	MX321									
VOLTAGE REGULATION	± 0.5 % With 4% ENGINE GOVERNING										
SUSTAINED SHORT CIRCUIT	REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)										
Sourained chort official			Den Deone								
INSULATION SYSTEM				CLAS	S H						
PROTECTION		IP23									
RATED POWER FACTOR				0.	8						
STATOR WINDING				DOUBLE L	AYER LAP						
WINDING PITCH				тwо т	HIRDS						
WINDING LEADS			6.	Wdg 312) or	-	1)					
		0.0		0 /	, o	,					
STATOR WDG. RESISTANCE		0.0	03 Onms PE			RCONNECT	ED				
ROTOR WDG. RESISTANCE				1.88 Ohm:							
EXCITER STATOR RESISTANCE				17 Ohms	at 22°C						
EXCITER ROTOR RESISTANCE			0.079	Ohms PER	PHASE AT 2	22°C					
R.F.I. SUPPRESSION	BS EN	V 61000-6-2 &	BS EN 6100	0-6-4,VDE 0	875G, VDE ()875N. refer t	to factory for	others			
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-	DISTORTING	BALANCE	D LINEAR LO	DAD < 5.0%				
MAXIMUM OVERSPEED				2250 R	ev/Min						
BEARING DRIVE END				BALL. 62	24 (ISO)						
BEARING NON-DRIVE END				BALL. 63	17 (ISO)						
		1 BE/	RING			2 BEA	RING				
			7 kg			2 DEA					
WEIGHT COMP. GENERATOR			•				<u> </u>				
WEIGHT WOUND STATOR			0 kg			1010	0				
WEIGHT WOUND ROTOR			3 kg		821 kg						
WR ² INERTIA		20.043	8 kgm ²			19.4965 kgm ²					
SHIPPING WEIGHTS in a crate		217	'3kg			218	0kg				
PACKING CRATE SIZE		183 x 92 x	k 140(cm)			183 x 92 x	140(cm)				
TELEPHONE INTERFERENCE			Hz <2%			60 TIF•					
			ec 3420 cfm			1.961 m³/se					
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277			
VOLTAGE PARALLEL STAR (*)	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138			
VOLTAGE DELTA kVA BASE RATING FOR	220	230	240	254	240	254	266	277			
REACTANCE VALUES	910	940	910	875	1025	1063	1075	1125			
Xd DIR. AXIS SYNCHRONOUS	2.99	2.80	2.51	2.15	3.37	3.13	2.89	2.78			
X'd DIR. AXIS TRANSIENT	0.25	0.24	0.21	0.18	0.29	0.27	0.25	0.24			
X"d DIR. AXIS SUBTRANSIENT	0.18	0.17	0.15	0.13	0.19	0.18	0.17	0.16			
	1.77	1.65	1.49	1.27	2.00	1.86	1.72	1.65			
X"q QUAD. AXIS SUBTRANSIENT XL LEAKAGE REACTANCE	0.19	0.18	0.16	0.14	0.22	0.20	0.19	0.18			
X2 NEGATIVE SEQUENCE	0.09	0.09	0.07	0.06	0.10	0.09	0.08	0.08			
X0 ZERO SEQUENCE	0.20	0.19	0.02	0.14	0.23	0.21	0.20	0.19			
REACTANCES ARE SATURA						ND VOLTAG					
T'd TRANSIENT TIME CONST.		•,		0.1							
T"d SUB-TRANSTIME CONST.				0.0							
T'do O.C. FIELD TIME CONST.	2.44										
Ta ARMATURE TIME CONST.				0.0 1/>							
SHORT CIRCUIT RATIO (*) Parallel Star connection only availa	I	~ · ·		1/7	w.						

(*) Parallel Star connection only available with Wdg 311

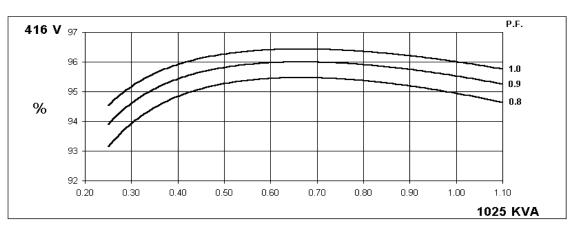


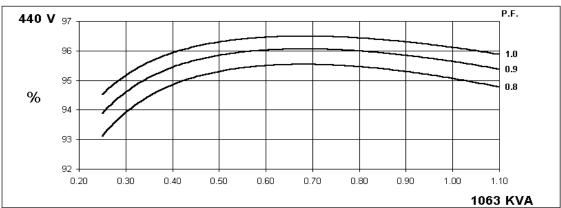

HCI634H WINDING 311 and 312

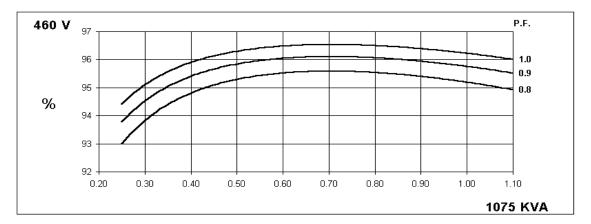

50

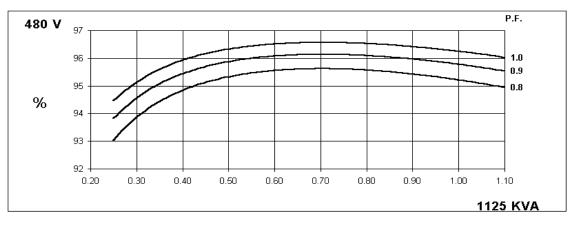

Hz

THREE PHASE EFFICIENCY CURVES

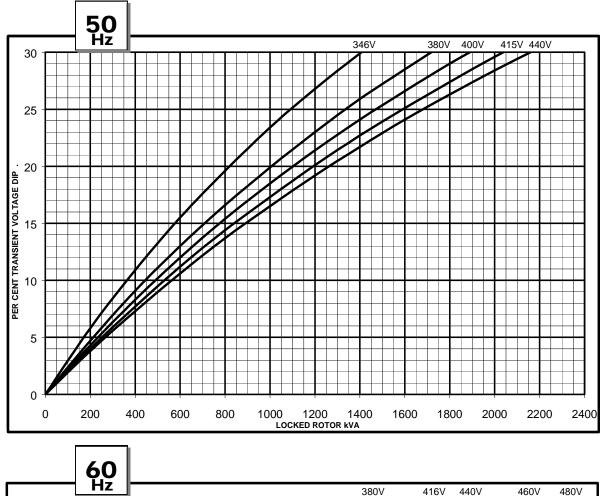

WINDING 311 and 312

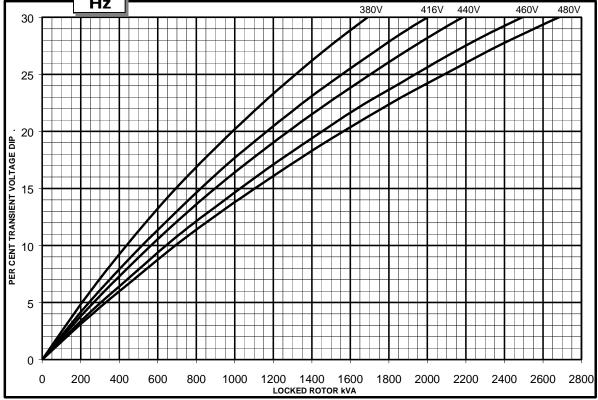

60


Hz

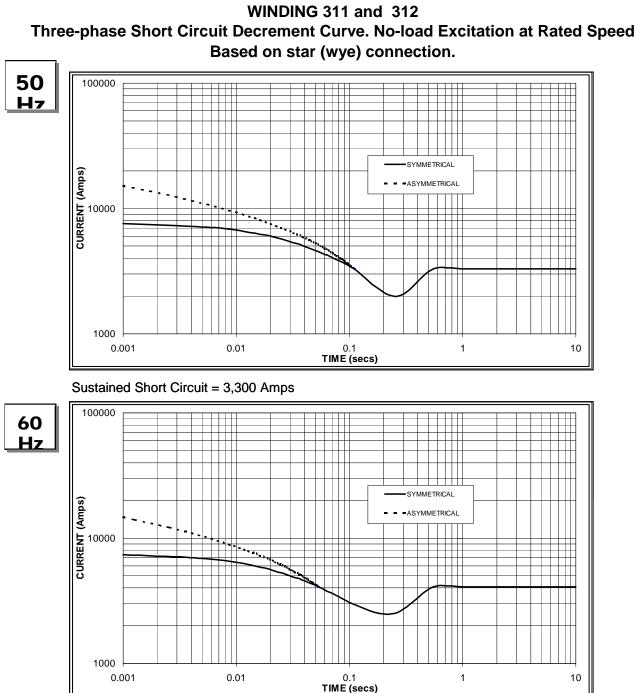

HCI634H

THREE PHASE EFFICIENCY CURVES





HCI634H


WINDING 311 and 312

Locked Rotor Motor Starting Curve

HCI634H

Sustained Short Circuit = 4,000 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60	Hz
Voltage	Factor	Voltage	Factor
380v	X 1.00	416v	x 1.00
400v	X 1.07	440v	x 1.06
415v	X 1.12	460v	x 1.12
440v	X 1.18	480v	x 1.17
The quetoine	d ourront vol	in in constan	t irreenetive

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

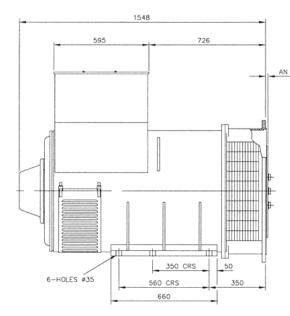
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

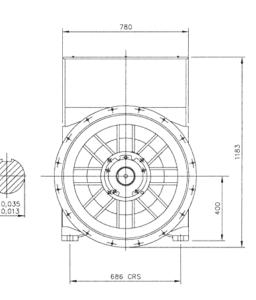
Note 3

Curves are drawn for Star (Wye) connected machines. For Delta connection multiply the Curve current value by 1.732

HCI634H


Winding 311 and 312 0.8 Power Factor

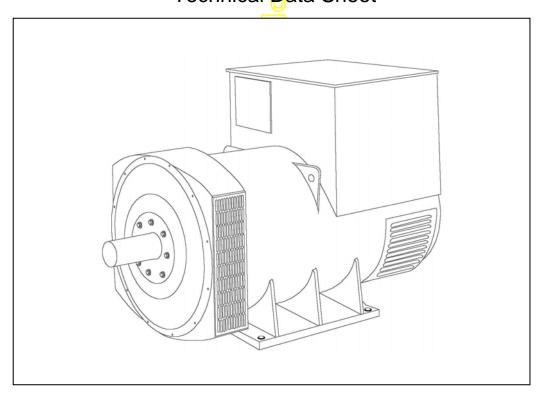

RATINGS


Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	Sta	andby -	150/40	°C	Sta	andby -	163/27	°C
50Hz Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Parallel Star (V) *	180	200	208	220	180	200	208	220	180	200	208	220	180	200	208	220
Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
kVA	830	860	830	800	910	940	910	875	960	980	960	920	1000	1010	1000	960
kW	664	688	664	640	728	752	728	700	768	784	768	736	800	808	800	768
Efficiency (%)	95.2	95.3	95.4	95.6	94.9	95.0	95.2	95.4	94.7	94.8	95.1	95.3	94.5	94.7	94.9	95.2
kW Input	697	722	696	669	767	792	765	734	811	827	808	772	847	853	843	807
60Hz Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Parallel Star (V) *	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
kVA	913	963	1000	1025	1025	1063	1075	1125	1088	1125	1138	1188	1125	1163	1175	1219
kW	730	770	800	820	820	850	860	900	870	900	910	950	900	930	940	975
Efficiency (%)	95.2	95.3	95.3	95.4	94.9	95.1	95.2	95.2	94.8	94.9	95.0	95.1	94.6	94.8	94.9	95.0
kW Input	767	808	839	860	864	894	903	945	918	948	958	999	951	981	991	1027

* Parallel Star only available with Wdg 311

DIMENSIONS

SAE	14	18	21	24
AN	25.4	15.87	0	0


Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

HCI634J - Winding 311 and 312 Technical Data Sheet

HCI634J

SPECIFICATIONS & OPTIONS WINDING 311 and 312

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

MX321 AVR - STANDARD

This sophisticated Automatic Voltage Regulator (AVR) is incorporated into the Stamford Permanent Magnet Generator (PMG) system and is fitted as standard to generators of this type.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with either 6 ends (Winding 312) or 12 ends (Winding 311) brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

10% when IP44 Filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level. 3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

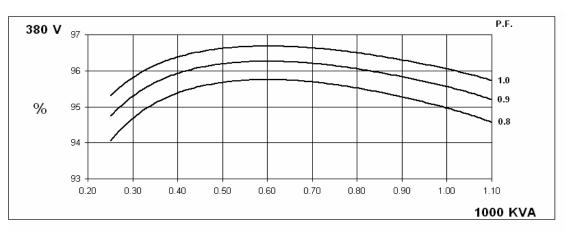
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

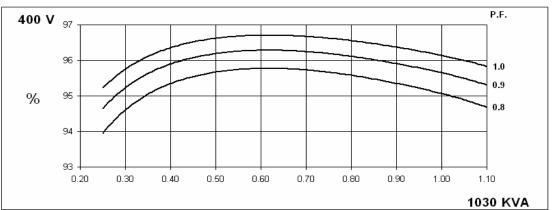
Front cover drawing typical of product range.

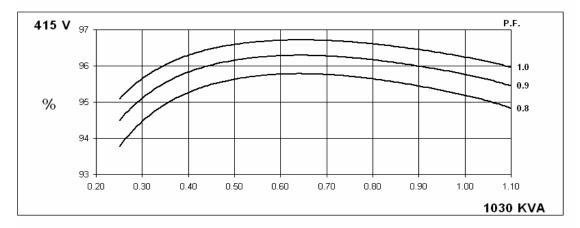
HCI634J

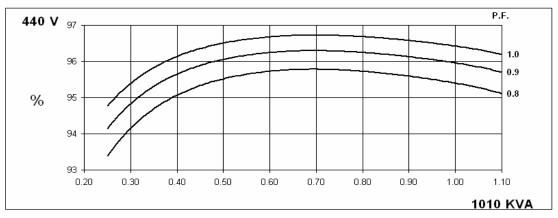
WINDING 311 and 312

	SEPARATELY EXCITED BY P.M.G.										
CONTROL SYSTEM			BY P.M.G.								
A.V.R.	MX321										
VOLTAGE REGULATION	± 0.5 %	With 4% EN	GINE GOVE	RNING							
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIR	CUIT DECRE	MENT CUR	/ES (page 7)						
INSULATION SYSTEM				CLAS	S H						
PROTECTION		IP23									
RATED POWER FACTOR		0.8									
STATOR WINDING		DOUBLE LAYER LAP									
WINDING PITCH		TWO THIRDS									
WINDING LEADS		6 (Wdg 312) or 12 (Wdg 311)									
STATOR WDG. RESISTANCE		0.0	02 Ohms PE	R PHASE AT	22°C STAR		Đ				
ROTOR WDG. RESISTANCE				2.09 Ohms	s at 22°C						
EXCITER STATOR RESISTANCE				17 Ohms	at 22°C						
EXCITER ROTOR RESISTANCE			0.079	Ohms PER	PHASE AT 2	22°C					
R.F.I. SUPPRESSION	BS EN	61000-6-2 &	BS EN 6100	0-6-4,VDE 0	875G, VDE 0)875N. refer t	o factory for	others			
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-	DISTORTING	BALANCE	D LINEAR LC	AD < 5.0%				
MAXIMUM OVERSPEED			70	2250 R	ev/Min						
BEARING DRIVE END			$\overline{\mathbf{O}}$	BALL. 62							
BEARING NON-DRIVE END			9								
		BALL. 6317 (ISO) 1 BEARING 2 BEARING									
							-				
WEIGHT COMP. GENERATOR			'9 kg			2300	0				
WEIGHT WOUND STATOR			0 kg			1120	-				
WEIGHT WOUND ROTOR		962	2 kg			916	kg				
WR ² INERTIA		22.928	37 kgm ²		22.3814 kgm ²						
SHIPPING WEIGHTS in a crate		232	28kg 🕗		2329kg						
PACKING CRATE SIZE		183 x 92 :	x <mark>140(c</mark> m)		183 x 92 x 140(cm)						
		50	HZ		60 Hz						
TELEPHONE INTERFERENCE		THF	< <mark>2%</mark>		TIF<50						
COOLING AIR		1.614 m³/se	ec -3420 cfm			1.961 m ³ /sec	c 4156 cfm				
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277			
VOLTAGE PARALLEL STAR (*)	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138			
VOLTAGE DELTA	220	230	240	254	240	254	266	277			
kVA BASE RATING FOR REACTANCE VALUES	1000	1030	1030	1000	1150	1200	1250	1300			
Xd DIR. AXIS SYNCHRONOUS	3.02	2.81	2.61	2.25	3.49	3.25	3.10	2.96			
X'd DIR. AXIS TRANSIENT	0.24	0.23	0.21	0.18	0.28	0.26	0.25	0.24			
X"d DIR. AXIS SUBTRANSIENT	0.17	0.15	0.14	0.12	0.19	0.18	0.17	0.16			
Xq QUAD. AXIS REACTANCE	1.78	1.66	1.54	1.33	2.05	1.91	1.82	1.74			
X"q QUAD. AXIS SUBTRANSIENT	0.21	0.20	0.19	0.16	0.25	0.23	0.22	0.21			
XL LEAKAGE REACTANCE	0.09	0.08	0.07	0.07	0.10	0.10	0.09	0.09			
X2 NEGATIVE SEQUENCE		0.21 0.20 0.19 0.16 0.25 0.23 0.22 0.21									
X0 ZERO SEQUENCE	0.03	0.02	0.02	0.02	0.03	0.03	0.03	0.03			
REACTANCES ARE SATURA	IED	V	ALUES ARE			ND VOLTAGI	E INDICATEI	נ			
T'd TRANSIENT TIME CONST. T''d SUB-TRANSTIME CONST.				0.1							
T'do O.C. FIELD TIME CONST.				3.0							
Ta ARMATURE TIME CONST.				0.0	46						
SHORT CIRCUIT RATIO				1/>	(d						

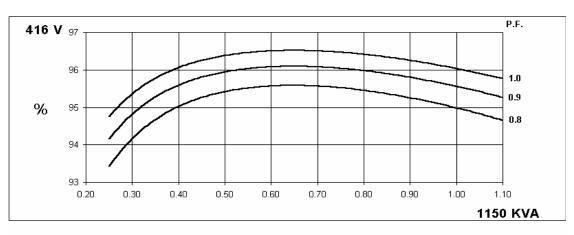


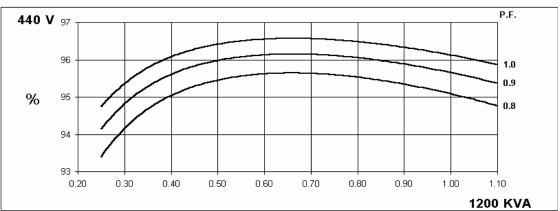

HCI634J WINDING 311 and 312

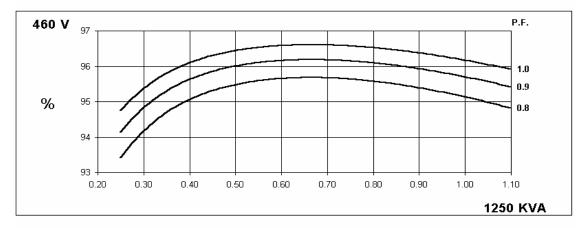

50

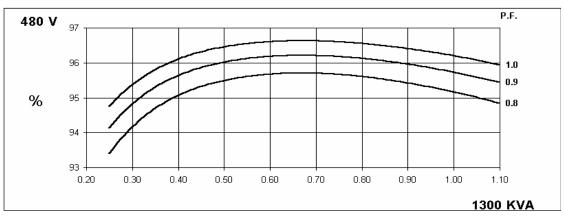

Hz

THREE PHASE EFFICIENCY CURVES

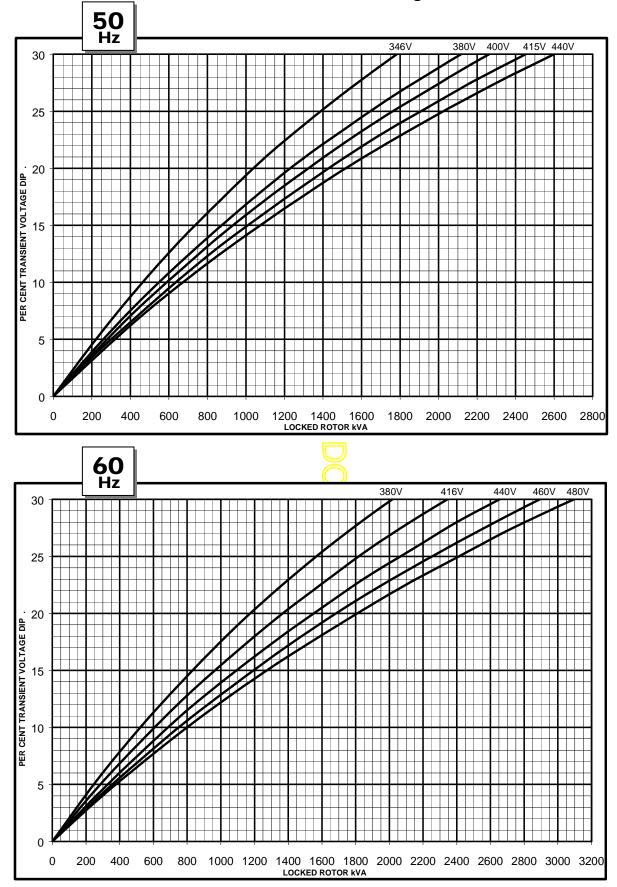



HCI634J WINDING 311 and 312


60

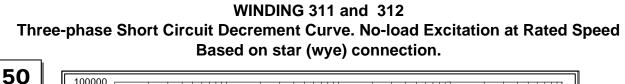

Hz

THREE PHASE EFFICIENCY CURVES



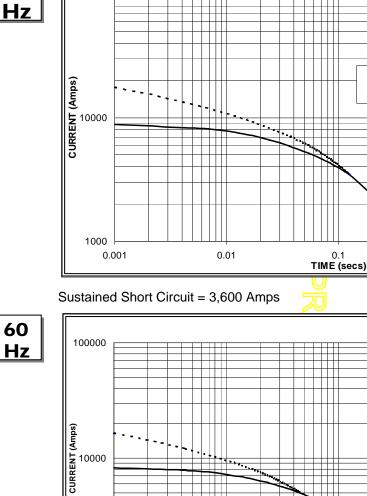
STAMFORD

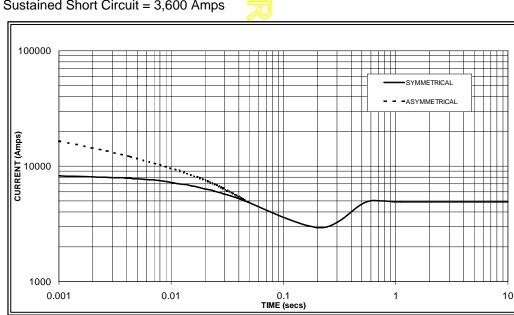
HCI634J


WINDING 311 and 312

Locked Rotor Motor Starting Curve

10


HCI634J


SYMMETRICAL

1

- - - ASYMMETRICAL

100000

0.1

Sustained Short Circuit = 4,900 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	X 1.00	416v	x 1.00			
400v	X 1.07	440v	x 1.06			
415v	X 1.12	460v	x 1.12			
440v	X 1.18	480v	x 1.17			
The sustaine	d current val	ue is constan	t irrespective			

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

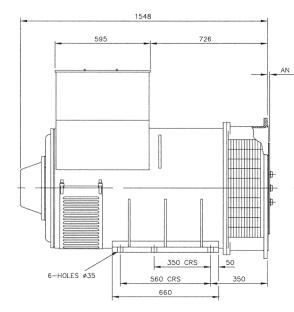
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

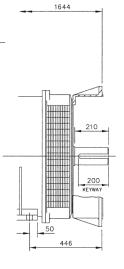
All other times are unchanged

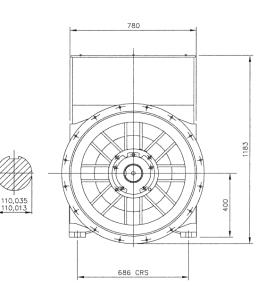
Note 3

Curves are drawn for Star (Wye) connected machines. For Delta connection multiply the Curve current value by 1.732

HCI634J

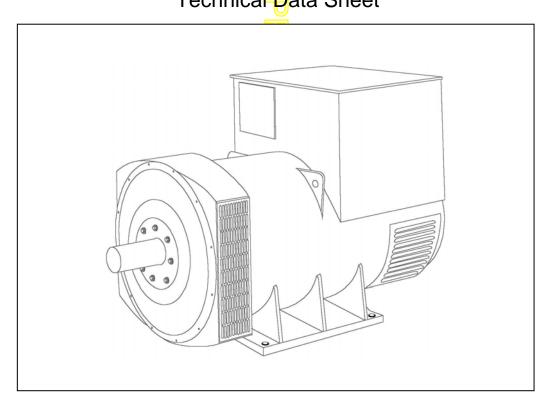

Winding 311 and 312 0.8 Power Factor


RATINGS


Class - Temp Rise	Co	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	Sta	andby -	150/40	°C	St	andby -	163/27	°C
50Hz Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Parallel Star (V) *	180	200	208	220	180	200	208	220	180	200	208	220	180	200	208	220
Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
kVA	900	927	927	900	1000	1030	1030	1010	1060	1070	1070	1060	1100	1110	1110	1100
kW	720	742	742	720	800	824	824	808	848	856	856	848	880	888	888	880
Efficiency (%)	95.3	95.4	95.5	95.6	95.0	95.1	95.2	95.4	94.7	94.9	95.1	95.3	94.6	94.8	94.9	95.2
kW Input	756	777	777	753	842	866	866	847	895	902	900	890	930	937	936	924
	I															
60Hz Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Parallel Star (V) *	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
kVA	1063	1100	1150	1188	1150	1200	250	1300	1206	1250	1300	1350	1250	1300	1350	1400
kW	850	880	920	950	920	960	1000	1040	965	1000	1040	1080	1000	1040	1080	1120
Efficiency (%)	95.2	95.3	95.3	95.4	95.0	95.1	95.1	95.2	94.8	95.0	95.0	95.1	94.7	94.8	94.9	94.9
kW Input	893	923	965	996	968	1009	1052	1092	1018	1053	1095	1136	1056	1097	1138	1180

* Parallel Star only available with Wdg 311

SAE	14	18	21	24
AN	25.4	15.87	0	0


Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

HCI634K - Winding 311 and 312 Technical Data Sheet

HCI634K

SPECIFICATIONS & OPTIONS WINDING 311 and 312

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

MX321 AVR - STANDARD

This sophisticated Automatic Voltage Regulator (AVR) is incorporated into the Stamford Permanent Magnet Generator (PMG) system and is fitted as standard to generators of this type.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with either 6 ends (Winding 312) or 12 ends (Winding 311) brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

10% when IP44 Filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level. 3% for every 5°C by which the operational ambient temperature exceeds 40°C.

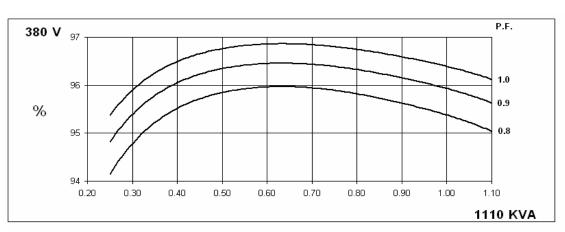
Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

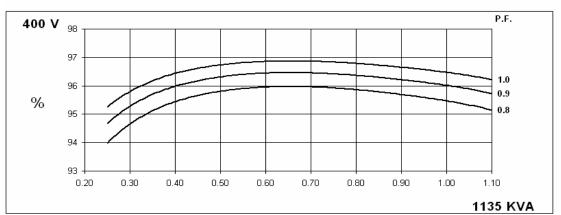
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

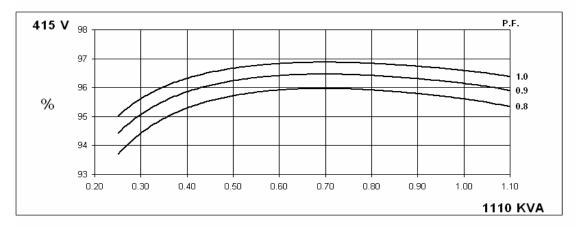
Front cover drawing typical of product range.

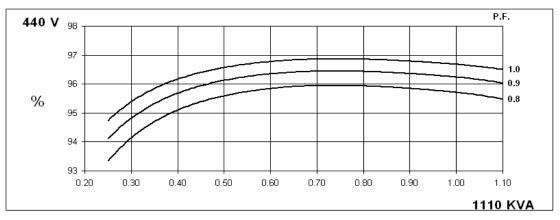
HCI634K

WINDING 311 and 312

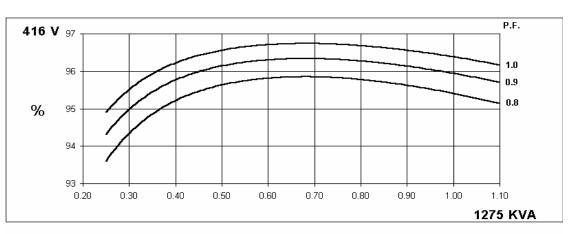

CONTROL SYSTEM	SEPARATE	SEPARATELY EXCITED BY P.M.G.									
A.V.R.	MX321										
VOLTAGE REGULATION	± 0.5 %		GINE GOVE								
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIRC	CUIT DECRE	MENT CURV	/ES (page 7)						
INSULATION SYSTEM				CLAS	SS H						
PROTECTION				IP2	23						
RATED POWER FACTOR		0.8									
STATOR WINDING		DOUBLE LAYER LAP									
		TWO THIRDS									
WINDING LEADS			6.		12 (Wdg 311	1)					
STATOR WDG. RESISTANCE		0.0		v ,	, U		-D				
		0.0					.0				
ROTOR WDG. RESISTANCE				2.36 Ohms							
EXCITER STATOR RESISTANCE				17 Ohms							
EXCITER ROTOR RESISTANCE			0.079	Ohms PER	PHASE AT 2	22°C					
R.F.I. SUPPRESSION	BS EN	61000-6-2 &	BS EN 6100	0-6-4,VDE 0	875G, VDE 0	875N. refer t	o factory for	others			
WAVEFORM DISTORTION		NO LOAD <	1.5 <mark>%</mark> NON-	DISTORTING	BALANCE	D LINEAR LO	AD < 5.0%				
MAXIMUM OVERSPEED			20	2250 R	ev/Min						
BEARING DRIVE END			\bigcirc	BALL. 62	24 (ISO)						
BEARING NON-DRIVE END			$\overline{\langle}$	BALL. 63	17 (ISO)						
		1 BEARING 2 BEARING									
WEIGHT COMP. GENERATOR		254	1 k g			2581	kg				
WEIGHT WOUND STATOR		129	4 kg			1294	kg				
WEIGHT WOUND ROTOR		109	13 kg			1048	s kg				
WR ² INERTIA			95 kgm ²		25.9823 kgm ²						
SHIPPING WEIGHTS in a crate					2622kg						
PACKING CRATE SIZE			x 147(cm)		194 x 92 x 147(cm)						
			Hz				. ,				
							Hz				
					TIF<50						
			ec -3420 cfm			1.961 m ³ /sec					
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277			
VOLTAGE PARALLEL STAR (*)	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138			
VOLTAGE DELTA	220	230	240	254	240	254	266	277			
kVA BASE RATING FOR REACTANCE VALUES	1110	1135	1110	1110	1275	1338	1388	1438			
Xd DIR. AXIS SYNCHRONOUS	2.78	2.57	2.33	2.08	3.20	3.00	2.85	2.71			
X'd DIR. AXIS TRANSIENT	0.22	0.20	0.18	0.16	0.26	0.24	0.23	0.22			
X"d DIR. AXIS SUBTRANSIENT	0.15	0.14	0.13	0.11	0.18	0.17	0.16	0.15			
Xq QUAD. AXIS REACTANCE	1.63	1.50	1.36	1.21	1.88	1.76	1.67	1.59			
X"q QUAD. AXIS SUBTRANSIENT	0.23	0.21	0.19	0.17	0.27	0.25	0.24	0.23			
XL LEAKAGE REACTANCE	0.08	0.07	0.06	0.06	0.09	0.08	0.08	0.07			
X2 NEGATIVE SEQUENCE	0.22	0.20	0.18	0.16	0.26	0.24	0.23	0.22			
X0 ZERO SEQUENCE	0.02	0.02				0.03		0.03			
REACTANCES ARE SATURA		V	ALUES ARE			ND VOLTAGE		ر			
T'd TRANSIENT TIME CONST. T"d SUB-TRANSTIME CONST.				0.1							
T'do O.C. FIELD TIME CONST.				3.							
Ta ARMATURE TIME CONST.				0.0							
SHORT CIRCUIT RATIO			1/Xd								

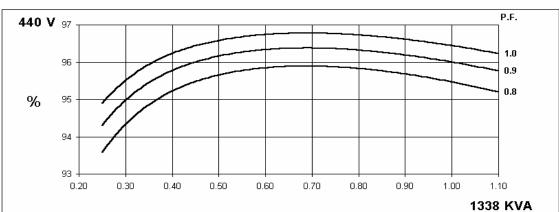

(*) Parallel Star connection only available with Wdg 311

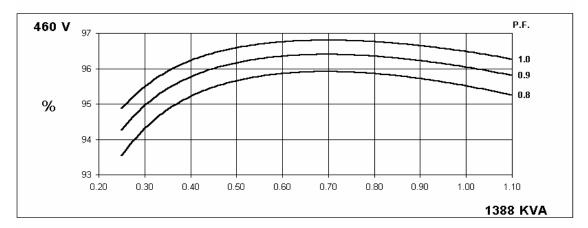


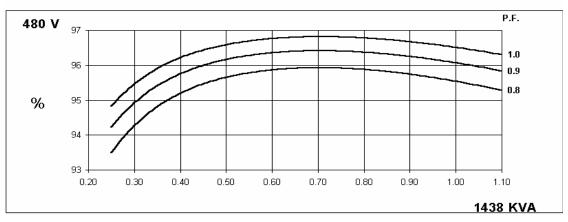

HCI634K WINDING 311 and 312

THREE PHASE EFFICIENCY CURVES

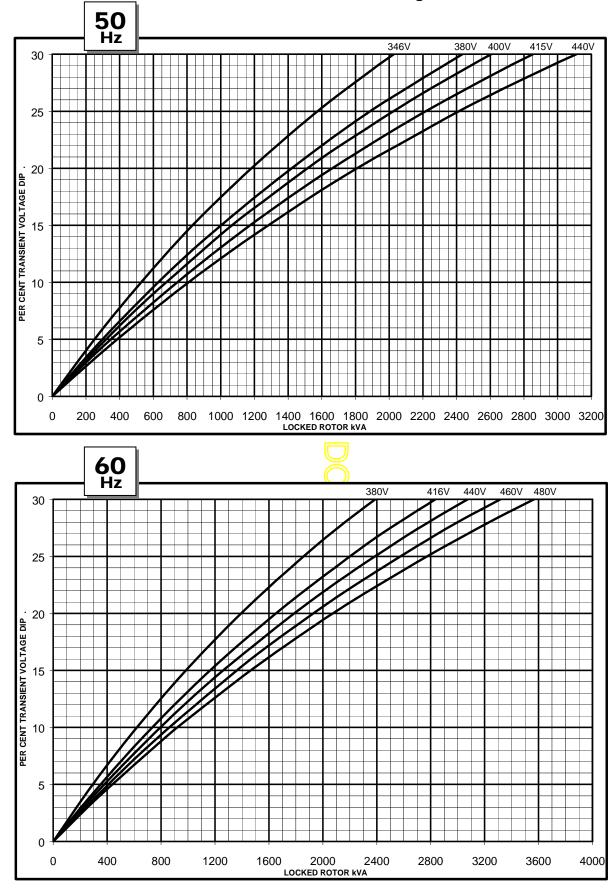

WINDING 311 and 312


60

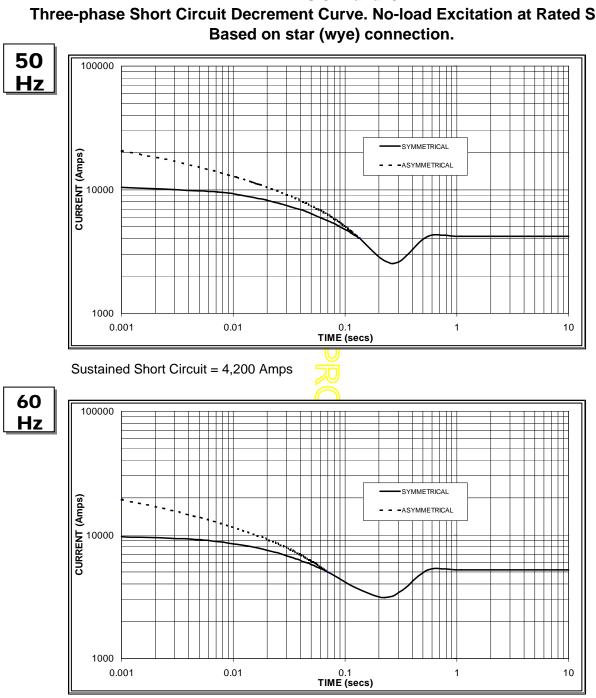

Hz


HCI634K

THREE PHASE EFFICIENCY CURVES



STAMFORD


HCI634K

WINDING 311 and 312

Locked Rotor Motor Starting Curve

HCI634K

WINDING 311 and 312 Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed

Sustained Short Circuit = 5,200 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	X 1.00	416v	x 1.00			
400v	X 1.07	440v	x 1.06			
415v	X 1.12	460v	x 1.12			
440v	X 1.18	480v	x 1.17			
The sustaine	ed current val	ue is constar	t irrespective			

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

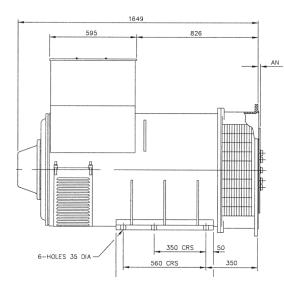
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

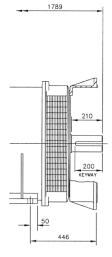
All other times are unchanged

Note 3

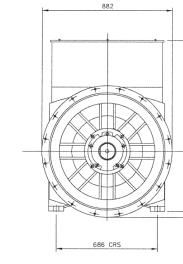
Curves are drawn for Star (Wye) connected machines. For Delta connection multiply the Curve current value by 1.732

HCI634K


Winding 311 and 312 0.8 Power Factor


RATINGS

Class - Temp Rise	Co	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	Standby - 150/40°C				Standby - 163/27°C			
50Hz Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Parallel Star (V) *	180	200	208	220	180	200	208	220	180	200	208	220	180	200	208	220
Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
kVA	1000	1018	1000	1000	1110	1135	1110	1110	1180	1190	1180	1180	1220	1230	1220	1220
kW	800	814	800	800	888	904	888	888	944	952	944	944	976	984	976	976
Efficiency (%)	95.6	95.7	95.8	95.9	95.4	95.5	95.6	95.7	95.2	95.3	95.5	95.6	95.1	95.2	95.4	95.5
kW Input	837	851	835	834	931	951	929	928	992	999	988	987	1026	1034	1023	1022
60Hz Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Parallel Star (V) *	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
kVA	1188	1238	1275	1313	1275	1338	388	1438	1350	1413	1469	1525	1400	1463	1519	1575
kW	950	990	1020	1050	1020	1070	1110	1150	1080	1130	1175	1220	1120	1170	1215	1260
Efficiency (%)	95.6	95.6	95.7	95.7	95.4	95.5	95.5	95.5	95.3	95.3	95.4	95.4	95.1	95.2	95.3	95.3
kW Input	994	1036	1066	1098	1069	1121	1163	1205	1133	1186	1232	1279	1178	1229	1275	1322


* Parallel Star only available with Wdg 311

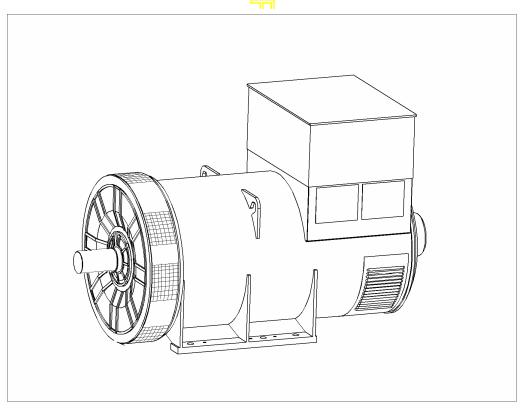
110,035

1183

400

SAE	14	18	21	24
AN	25.4	15.87	0	0

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100


www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

PI734A - Winding 312

Technica Data Sheet

PI734A SPECIFICATIONS & OPTIONS

STAMFORD

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant sections of other national and international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC60034, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

DESCRIPTION

The STAMFORD PI range of synchronous ac generators are brushless with a rotating field. They are separately excited by the STAMFORD Permanent Magnet Generator (PMG). This is a shaft mounted, high frequency, pilot exciter which provides a constant supply of clean power via the Automatic Voltage Regulator (AVR) to the main exciter. The main exciter output is fed to the main rotor, through a full wave bridge rectifier, protected by surge suppression.

VOLTAGE REGULATORS

The PI range generators, complete with a PMG, are available with one of two AVRs. Each AVR has soft start voltage build up and built in protection against sustained over-excitation, which will de-excite the generator after a minimum of 8 seconds.

Underspeed protection (UFRO) is also provided on both AVRs. The UFRO will reduce the generator output voltage proportional to the speed of the generator below a presettable level.

The **MX341 AVR** is two phase sensed with a voltage regulation of ± 1 %. (see the note on regulation).

The **MX321 AVR** is 3 phase rms sensed with a voltage regulation of 0.5% rms (see the note on regulation). The UFRO circuit has adjustable slope and dwell for controlled recovery from step loads. An over voltage protection circuit will shutdown the output device of the AVR, it can also trip an optional excitation circuit breaker if required. As an option, short circuit current limiting is available with the addition of current transformers.

Both the MX341 and the MX321 need a generator mounted current transformer to provide quadrature droop characteristics for load sharing during parallel operation. Provision is also made for the connection of the STAMFORD power factor controller, for embedded applications, and a remote voltage trimmer.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low levels of voltage waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H', and meets the requirements of UL1446.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

NOTE ON REGULATION

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

10% when IP44 Filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level. 3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient temperature exceeding 60°C must be referred to the factory.

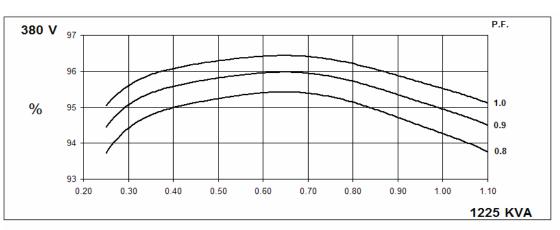
Note: Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

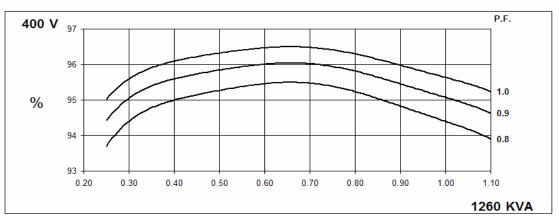
Front cover drawing is typical of the product range.

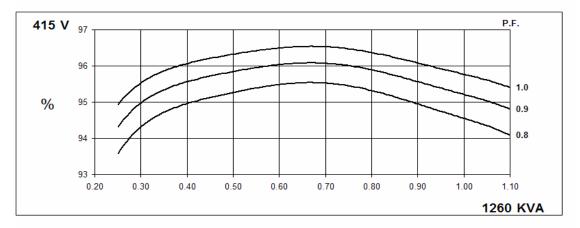
STAMFORD

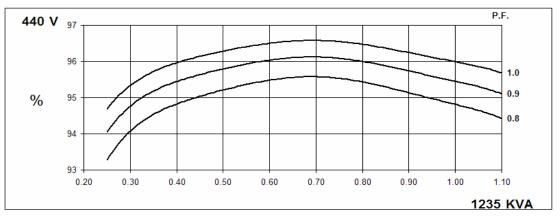
PI734A

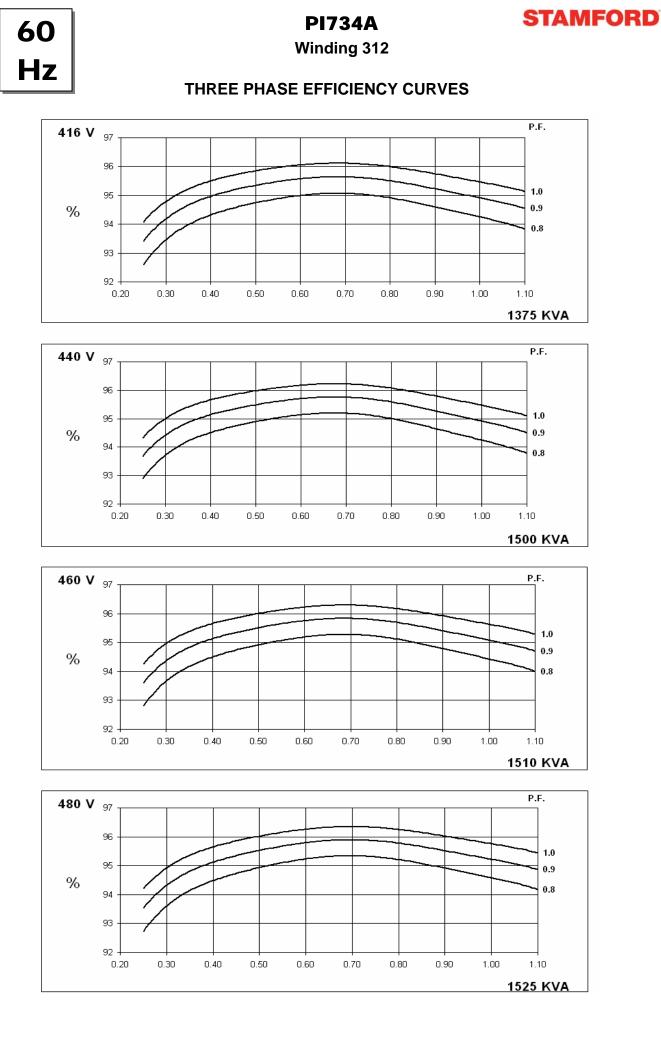
WINDING 312

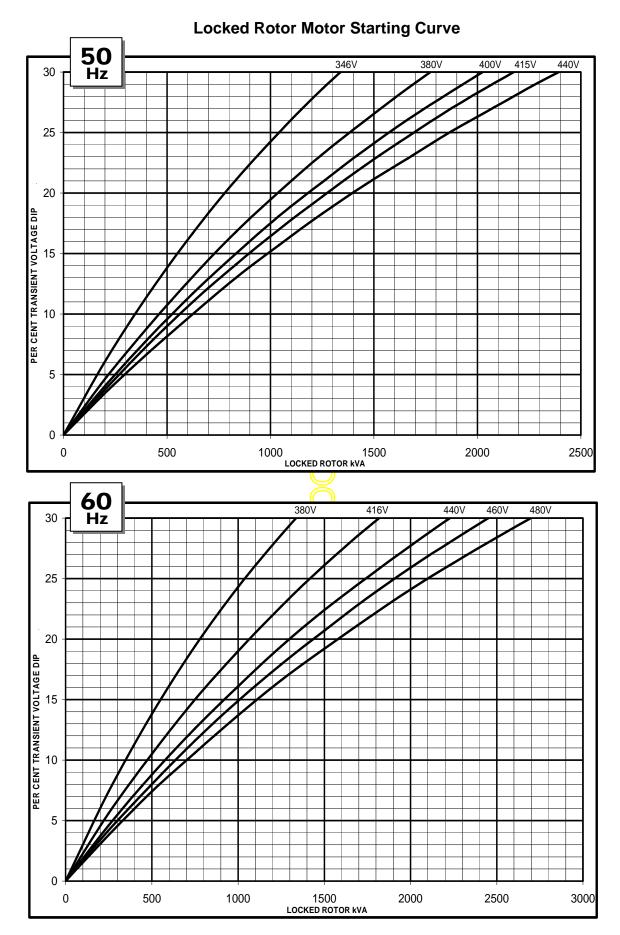

CONTROL SYSTEM	SEPARATELY EXCITED BY P.M.G.									
A.V.R.	MX341	MX321								
VOLTAGE REGULATION	± 1%	± 0.5 %	With 4% ENG	GINE GOVER	RNING					
SUSTAINED SHORT CIRCUIT	REFER TO S	SHORT CIRC		IENT CURVE	ES (page 7)					
INSULATION SYSTEM				CLAS	SS H					
PROTECTION		IP23								
RATED POWER FACTOR		0.8								
STATOR WINDING		DOUBLE LAYER LAP								
WINDING PITCH				TWO TI	HIRDS					
WINDING LEADS				6	i					
MAIN STATOR RESISTANCE		0.0	016 Ohms PE	R PHASE A	T 22°C STAF	R CONNECTE	ED			
MAIN ROTOR RESISTANCE				1.67 Ohms	s at 22°C					
EXCITER STATOR RESISTANCE				17.5 Ohms	s at 22°C					
EXCITER ROTOR RESISTANCE			0.06	3 Ohms PER	PHASE AT 2	2°C				
R.F.I. SUPPRESSION	BS EI	N 61000-6-2	& BSEN 6100	0-6-4,VDE 0	875G, VDE 0	875N. refer to	o factory for o	thers		
WAVEFORM DISTORTION		NO LOAD	< 1.5% NON-	DISTORTING	G BALANCED	LINEAR LO	AD < 5.0%			
MAXIMUM OVERSPEED				2250 R	ev/Min					
BEARING DRIVE END				BALL. 6	228 C3					
BEARING NON-DRIVE END		BALL. 6319 C3								
		1 BEARING 2 BEARING								
WEIGHT COMP. GENERATOR		276	60 kg		2710 kg					
WEIGHT WOUND STATOR		130	06 kg			1306	6 kg			
WEIGHT WOUND ROTOR		113	39 kg		1077 kg					
WR² INERTIA		32.749			31.7489 kgm ²					
SHIPPING WEIGHTS in a crate			33kg			277	-			
PACKING CRATE SIZE		194 x 105	x 154(cm)			194 x 105 x	x 154(cm)			
		50	Hz			60 Hz				
TELEPHONE INTERFERENCE		THF	<2%			TIF<50				
COOLING AIR		2.69 m ³ /se	c 5700 cfm			3.45 m ³ /sec	; 7300 cfm			
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277		
KVA BASE RATING FOR REACTANCE VALUES	1225	1260	1260	1235	1375	1500	1510	1525		
Xd DIR. AXIS SYNCHRONOUS	3.51	3.26	3.02	2.64	4.24	4.14	3.81	3.53		
X'd DIR. AXIS TRANSIENT	0.21	0.20	0.18	0.16	0.26	0.25	0.23	0.22		
X"d DIR. AXIS SUBTRANSIENT	0.16	0.15	0.14	0.12	0.19	0.19	0.17	0.16		
Xq QUAD. AXIS REACTANCE	2.26	2.10	1.95	1.70	2.74	2.67	2.46	2.28		
X"q QUAD. AXIS SUBTRANSIENT	0.32	0.29	0.27	0.24	0.38	0.37	0.34	0.32		
XL LEAKAGE REACTANCE	0.04	0.04	0.03	0.03	0.05	0.05	0.04	0.04		
X2 NEGATIVE SEQUENCE	0.22	0.21	0.19	0.17	0.27	0.26	0.24	0.23		
X0 ZERO SEQUENCE	0.03	0.03	0.02	0.02	0.03	0.03	0.03	0.03		
REACTANCES ARE SATURA	TED	N	ALUES ARE	PER UNIT A	T RATING A)		
T'd TRANSIENT TIME CONST.	0.13s									
				0.0						
T'do O.C. FIELD TIME CONST.		2.14s								
TA ARMATURE TIME CONST.				0.0						
HORT CIRCUIT RATIO 1/Xd										



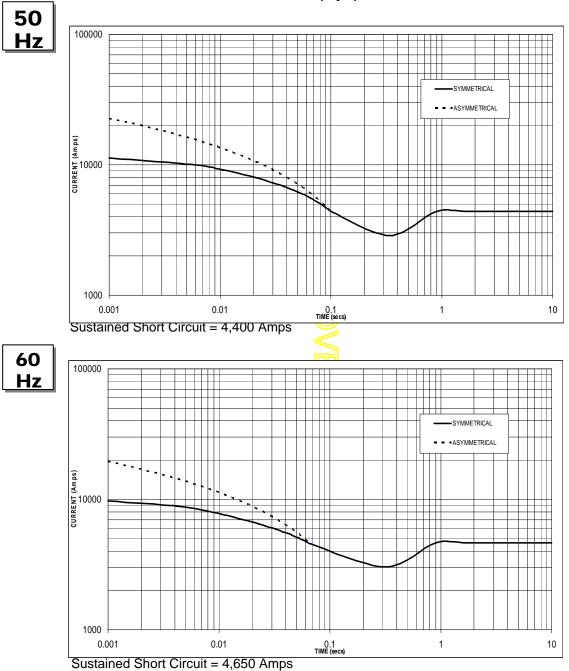

PI734A Winding 312


50 Hz





PI734A


Winding 312

STAMFORD

PI734A

Winding 312 Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60	Hz
Voltage	Factor	Voltage	Factor
380v	x 1.00	416v	x 1.00
400v	x 1.05	440v	x 1.06
415v	x 1.09	460v	x 1.10
440v	x 1.16	480v	x 1.15

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines.

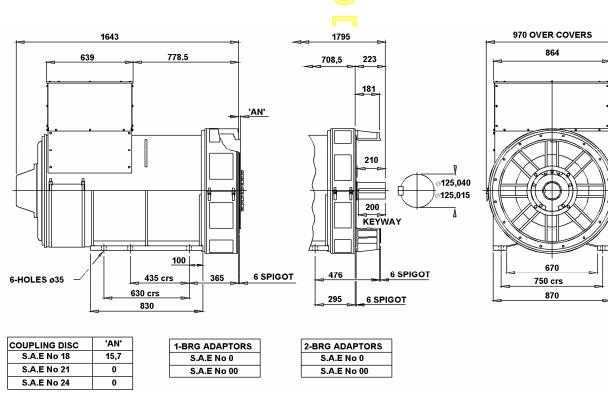
STAMFORD

1330

472

450,0 449,5

35

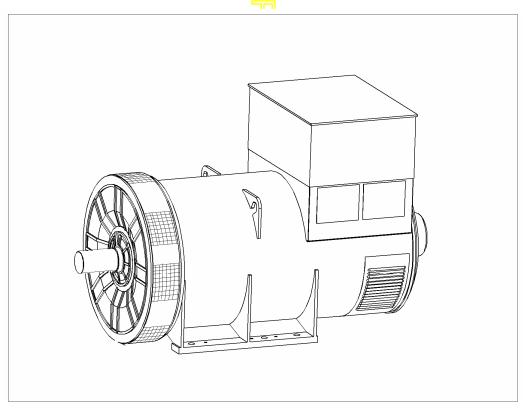

PI734A

Winding 312 / 0.8 Power Factor

RATINGS

Class - Temp Rise	C	Cont. F - 105/40°C			Cont. H - 125/40°C				Standby - 150/40°C				Standby - 163/27°C			
50Hz Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
kVA	1140	1175	1175	1150	1225	1260	1260	1235	1275	1315	1315	1290	1310	1350	1350	1325
kW	912	940	940	920	980	1008	1008	988	1020	1052	1052	1032	1048	1080	1080	1060
Efficiency (%)	94.5	94.6	94.8	95.0	94.3	94.4	94.6	94.8	94.1	94.2	94.4	94.7	94.0	94.1	94.3	94.6
kW Input	965	994	992	968	1039	1068	1066	1042	1084	1117	1114	1090	1115	1148	1145	1121
-																
60Hz Star (V)	416	440	460	480	416	440	<mark>}</mark> 460	480	416	440	460	480	416	440	460	480
kVA	1275	1395	1405	1415	1375	1500	510	1525	1425	1560	1570	1585	1465	1605	1615	1630
kW	1020	1116	1124	1132	1100	1200	1208	1220	1140	1248	1256	1268	1172	1284	1292	1304
Efficiency (%)	94.5	94.5	94.6	94.8	94.3	94.2	94.4	94.6	94.1	94.1	94.3	94.5	94.0	94.0	94.2	94.4
kW Input	1079	1181	1188	1194	1167	1274	1280	1290	1211	1326	1332	1342	1247	1366	1372	1381

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100


www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

PI734B - Winding 312

Technica Data Sheet

PI734B

STAMFORD

SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant sections of other national and international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC60034, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

DESCRIPTION

The STAMFORD PI range of synchronous ac generators are brushless with a rotating field. They are separately excited by the STAMFORD Permanent Magnet Generator (PMG). This is a shaft mounted, high frequency, pilot exciter which provides a constant supply of clean power via the Automatic Voltage Regulator (AVR) to the main exciter. The main exciter output is fed to the main rotor, through a full wave bridge rectifier, protected by surge suppression.

VOLTAGE REGULATORS

The PI range generators, complete with a PMG, are available with one of two AVRs. Each AVR has soft start voltage build up and built in protection against sustained over-excitation, which will de-excite the generator after a minimum of 8 seconds.

Underspeed protection (UFRO) is also provided on both AVRs. The UFRO will reduce the generator output voltage proportional to the speed of the generator below a presettable level.

The **MX341 AVR** is two phase sensed with a voltage regulation of ± 1 %. (see the note on regulation).

The **MX321 AVR** is 3 phase rms sensed with a voltage regulation of 0.5% rms (see the note on regulation). The UFRO circuit has adjustable slope and dwell for controlled recovery from step loads. An over voltage protection circuit will shutdown the output device of the AVR, it can also trip an optional excitation circuit breaker if required. As an option, short circuit current limiting is available with the addition of current transformers.

Both the MX341 and the MX321 need a generator mounted current transformer to provide quadrature droop characteristics for load sharing during parallel operation. Provision is also made for the connection of the STAMFORD power factor controller, for embedded applications, and a remote voltage trimmer.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low levels of voltage waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H', and meets the requirements of UL1446.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

NOTE ON REGULATION

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

10% when IP44 Filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level. 3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient temperature exceeding 60°C must be referred to the factory.

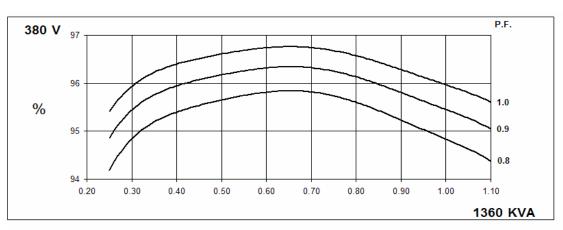
Note: Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

Front cover drawing is typical of the product range.

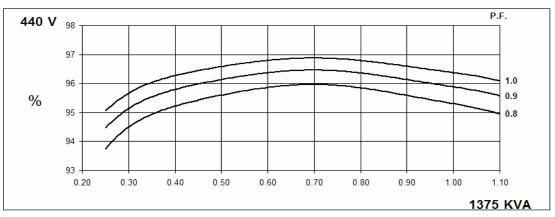
STAMFORD

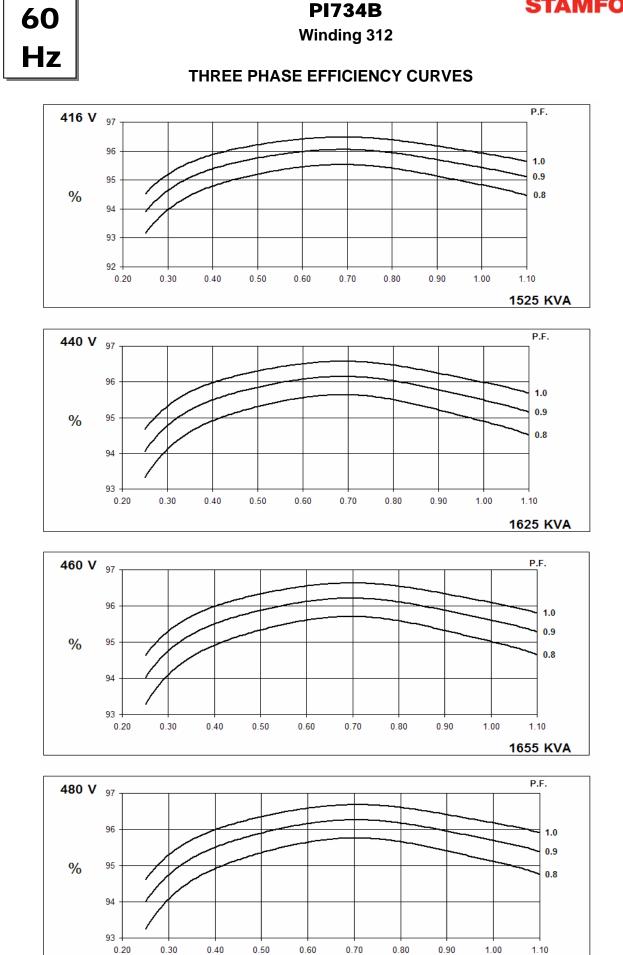
PI734B

WINDING 312


CONTROL SYSTEM	SEPARATELY EXCITED BY P.M.G.									
A.V.R.	MX341	MX321	DTT.WI.C.							
VOLTAGE REGULATION	± 1%	± 0.5 %	With 4% ENG							
SUSTAINED SHORT CIRCUIT	REFER IUS				=5 (page 7)					
INSULATION SYSTEM				CLAS	SS H					
PROTECTION		IP23								
RATED POWER FACTOR		0.8								
STATOR WINDING		DOUBLE LAYER LAP								
WINDING PITCH		TWO THIRDS								
WINDING LEADS				6	i					
MAIN STATOR RESISTANCE		0.0	016 Ohms PE	R PHASE A	T 22°C STAF		ED			
MAIN ROTOR RESISTANCE				1.67 Ohm:	s at 22°C					
EXCITER STATOR RESISTANCE			50	17.5 Ohm:	s at 22°C					
EXCITER ROTOR RESISTANCE			0.06	3 Ohms PER	PHASE AT 2	2°C				
R.F.I. SUPPRESSION	BS EI	N 61000-6-2	& BSEN 6100	0-6-4,VDE 0	875G, VDE 0	875N. refer to	o factory for o	thers		
WAVEFORM DISTORTION		NO LOAD	< 1.5% NON-	DISTORTING	BALANCE	D LINEAR LO	AD < 5.0%			
MAXIMUM OVERSPEED			9	2250 R	ev/Min					
BEARING DRIVE END		BALL. 6228 C3								
BEARING NON-DRIVE END		BALL. 6319 C3								
		1 BEARING 2 BEARING								
WEIGHT COMP. GENERATOR		276	60 kg		2710 kg					
WEIGHT WOUND STATOR		130)6 kg			1306	3 kg			
WEIGHT WOUND ROTOR		113	39 kg		1077 kg					
WR ² INERTIA					31.7489 kgm ²					
SHIPPING WEIGHTS in a crate			33kg		2779kg					
PACKING CRATE SIZE			x 154(cm)			194 x 105 x				
) Hz		60 Hz					
TELEPHONE INTERFERENCE		THE	-<2%		TIF<50					
COOLING AIR			c 5700 cfm			3.45 m ³ /sec		m		
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277		
KVA BASE RATING FOR REACTANCE	1360	1400	1400	1375	1525	1625	1655	1690		
Xd DIR. AXIS SYNCHRONOUS	3.50	3.26	3.02	2.64	4.25	4.04	3.77	3.53		
X'd DIR. AXIS TRANSIENT	0.21	0.20	0.18	0.16	0.26	0.25	0.23	0.22		
X"d DIR. AXIS SUBTRANSIENT	0.16	0.15	0.14	0.12	0.19	0.18	0.17	0.16		
Xq QUAD. AXIS REACTANCE	2.26	2.10	1.95	1.70	2.74	2.61	2.43	2.28		
X"q QUAD. AXIS SUBTRANSIENT	0.32	0.29	0.27	0.24	0.38	0.37	0.34	0.32		
XL LEAKAGE REACTANCE	0.04	0.04	0.03	0.03	0.05	0.05	0.04	0.04		
X2 NEGATIVE SEQUENCE	0.22	0.21	0.19	0.17	0.27	0.26	0.24	0.23		
X0 ZERO SEQUENCE	0.03	0.03	0.02	0.02	0.03	0.03	0.03	0.03		
REACTANCES ARE SATURA	FED	Ň	VALUES ARE	PER UNIT A	T RATING A)		
T'd TRANSIENT TIME CONST.	0.13s									
T"d SUB-TRANSTIME CONST.				0.0						
T'do O.C. FIELD TIME CONST.				2.1						
TA ARMATURE TIME CONST.				0.0						
SHORT CIRCUIT RATIO	RT CIRCUIT RATIO 1/Xd									

PI734B


Winding 312


THREE PHASE EFFICIENCY CURVES

5

0.70

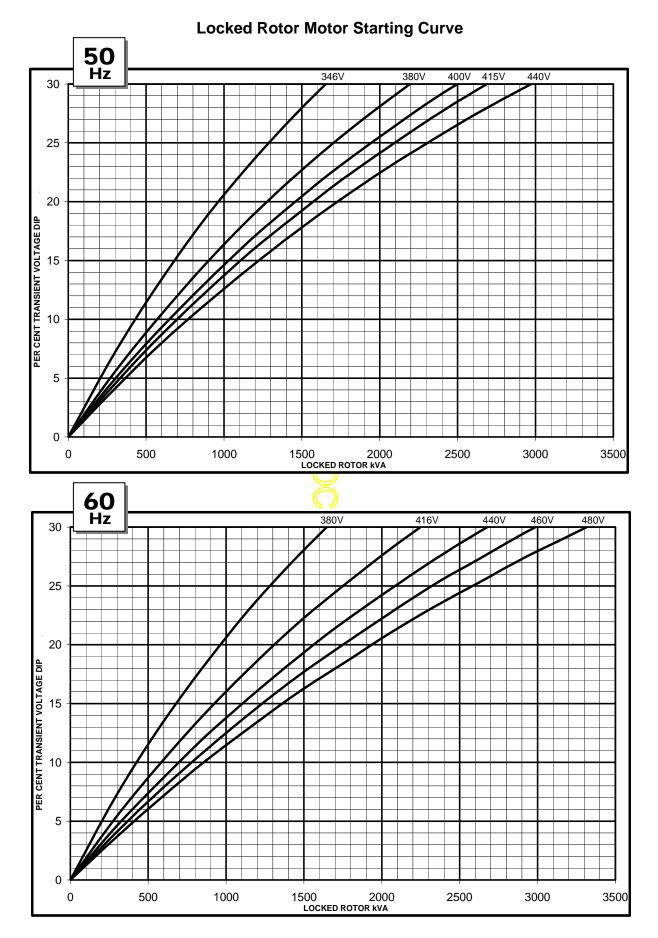
1.00

1.10 1690 KVA

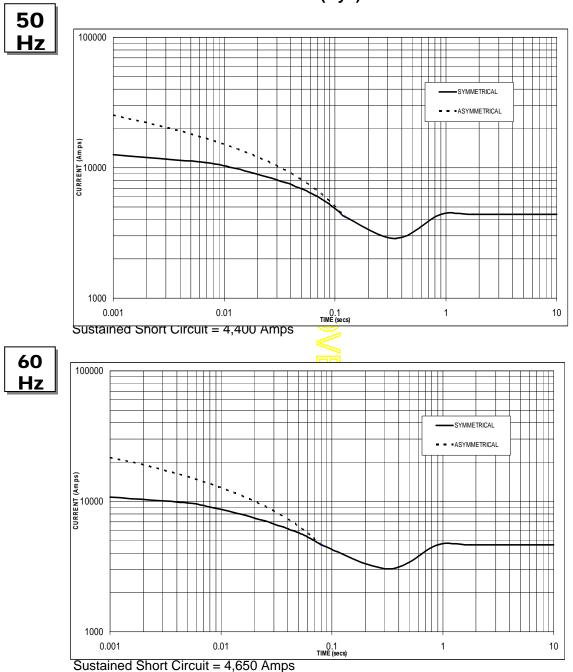
0.60

0.20

0.30


0.40

0.50


PI734B

Winding 312

PI734B

STAMFORD

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60	Hz			
Voltage	Factor	Voltage	Factor			
380v	x 1.00	416v	x 1.00			
400v	x 1.05	440v	x 1.06			
415v	x 1.09	460v	x 1.10			
440v	x 1.16	480v	x 1.15			

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines.

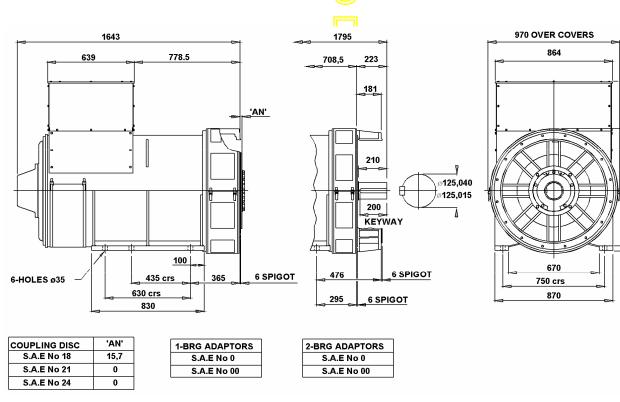
1330

472

Ā

450,0 449,5

35

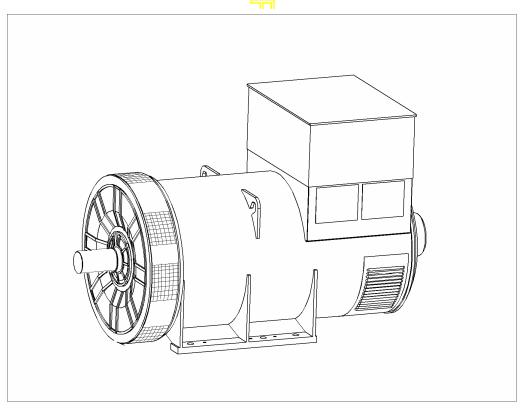

PI734B

Winding 312 / 0.8 Power Factor

RATINGS

Class - Temp Rise	Co	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	Sta	andby -	150/40	°C	St	andby -	163/27	°°C
50Hz Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
kVA	1265	1305	1305	1280	1360	1400	1400	1375	1415	1460	1460	1430	1455	1500	1500	1470
kW	1012	1044	1044	1024	1088	1120	1120	1100	1132	1168	1168	1144	1164	1200	1200	1176
Efficiency (%)	95.1	95.2	95.3	95.5	94.8	94.9	95.1	95.3	94.7	94.8	94.9	95.2	94.6	94.7	94.9	95.1
kW Input	1064	1097	1095	1072	1148	1180	1178	1154	1195	1232	1231	1202	1230	1267	1264	1237
	1															
60Hz Star (V)	416	440	460	480	416	440	<mark>,</mark> 460	480	416	440	460	480	416	440	460	480
kVA	1415	1510	1540	1575	1525	1625	655	1690	1590	1690	1725	1760	1630	1740	1775	1810
kW	1132	1208	1232	1260	1220	1300	1324	1352	1272	1352	1380	1408	1304	1392	1420	1448
Efficiency (%)	95.0	95.1	95.2	95.3	94.8	94.9	95.0	95.1	94.7	94.8	94.9	95.0	94.6	94.7	94.8	94.9
kW Input	1192	1270	1294	1322	1287	1370	1394	1422	1343	1426	1454	1482	1378	1470	1498	1526

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100


www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

PI734C - Winding 312

Technica Data Sheet

PI734C SPECIFICATIONS & OPTIONS

STAMFORD

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant sections of other national and international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC60034, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

DESCRIPTION

The STAMFORD PI range of synchronous ac generators are brushless with a rotating field. They are separately excited by the STAMFORD Permanent Magnet Generator (PMG). This is a shaft mounted, high frequency, pilot exciter which provides a constant supply of clean power via the Automatic Voltage Regulator (AVR) to the main exciter. The main exciter output is fed to the main rotor, through a full wave bridge rectifier, protected by surge suppression.

VOLTAGE REGULATORS

The PI range generators, complete with a PMG, are available with one of two AVRs. Each AVR has soft start voltage build up and built in protection against sustained over-excitation, which will de-excite the generator after a minimum of 8 seconds.

Underspeed protection (UFRO) is also provided on both AVRs. The UFRO will reduce the generator output voltage proportional to the speed of the generator below a presettable level.

The **MX341 AVR** is two phase sensed with a voltage regulation of ± 1 %. (see the note on regulation).

The **MX321 AVR** is 3 phase rms sensed with a voltage regulation of 0.5% rms (see the note on regulation). The UFRO circuit has adjustable slope and dwell for controlled recovery from step loads. An over voltage protection circuit will shutdown the output device of the AVR, it can also trip an optional excitation circuit breaker if required. As an option, short circuit current limiting is available with the addition of current transformers.

Both the MX341 and the MX321 need a generator mounted current transformer to provide quadrature droop characteristics for load sharing during parallel operation. Provision is also made for the connection of the STAMFORD power factor controller, for embedded applications, and a remote voltage trimmer.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low levels of voltage waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H', and meets the requirements of UL1446.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

NOTE ON REGULATION

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

10% when IP44 Filters are fitted.

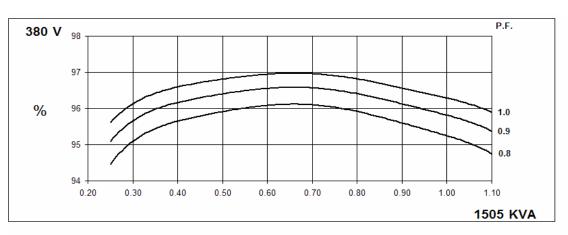
3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level. 3% for every 5°C by which the operational ambient temperature exceeds 40°C.

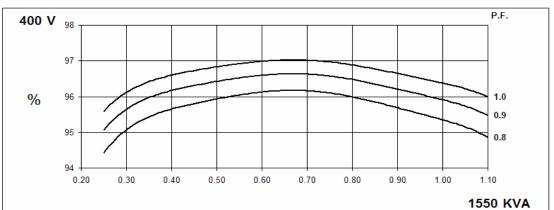
Note: Requirement for operating in an ambient temperature exceeding 60°C must be referred to the factory.

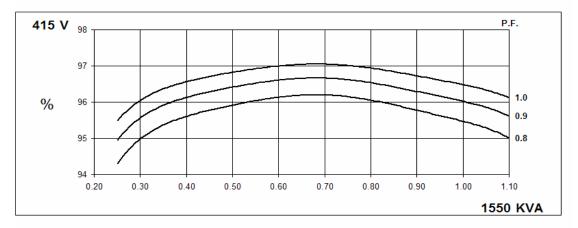
Note: Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

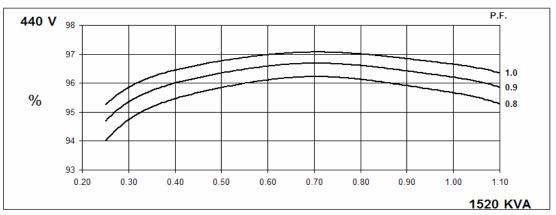
Front cover drawing is typical of the product range.

PI734C

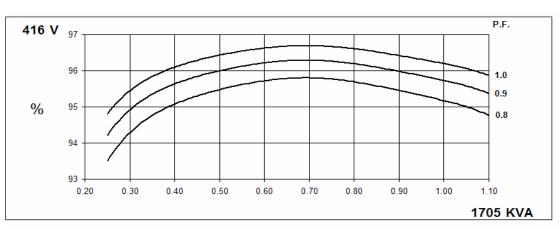

WINDING 312

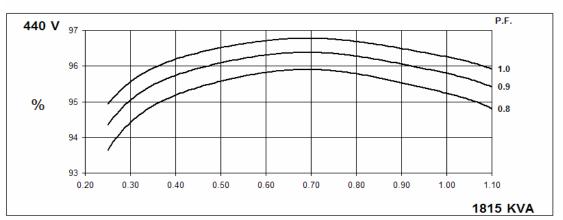

CONTROL SYSTEM	SEPARATEL	Y EXCITED	BY P.M.G.										
A.V.R.	MX341	MX321											
VOLTAGE REGULATION	±1%	± 0.5 %	With 4% ENG		NING								
SUSTAINED SHORT CIRCUIT		ER TO SHORT CIRCUIT DECREMENT CURVES (page 7)											
	<u> </u>				(10)								
INSULATION SYSTEM				CLAS	SS H								
PROTECTION		IP23											
RATED POWER FACTOR		0.8											
STATOR WINDING		DOUBLE LAYER LAP											
WINDING PITCH				TWO TI	HIRDS								
WINDING LEADS				6									
MAIN STATOR RESISTANCE		0.00	0126 Ohms P	ER PHASE A	T 22°C STA	R CONNECT	ED						
MAIN ROTOR RESISTANCE				1.85 Ohms	s at 22°C								
EXCITER STATOR RESISTANCE			50	17.5 Ohms	s at 22°C								
EXCITER ROTOR RESISTANCE			0.06	3 Ohms PER	PHASE AT 2	2°C							
R.F.I. SUPPRESSION	BS EI	N 61000-6-2 a	& BSEN 6100	0-6-4,VDE 0	875G, VDE 0	875N. refer to	o factory for o	thers					
WAVEFORM DISTORTION			< 1.5% NON-										
MAXIMUM OVERSPEED			<u> </u>	2250 R									
BEARING DRIVE END				BALL. 6									
BEARING NON-DRIVE END			<u></u>	BALL. 6									
		1 DE/		DALL. U	519 05	2 BEA	PINC						
WEIGHT COMP. GENERATOR			8 kg			2967	5 kg						
WEIGHT WOUND STATOR			5 kg				•						
WEIGHT WOUND ROTOR			7 kg			1195	-						
WR ² INERTIA			9 kgm²			36.33	-						
SHIPPING WEIGHTS in a crate)1kg			303	-						
PACKING CRATE SIZE			x 154(cm)			194 x 105 x							
			Hz			60	Hz						
TELEPHONE INTERFERENCE		THF	<2%			TIF∢	<50						
COOLING AIR		2.69 m ³ /se	c 5700 cfm			3.45 m ³ /sec	: 7300 cfm	1					
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277					
kVA BASE RATING FOR REACTANCE VALUES	1505	1550	1550	1520	1705	1815	1855	1890					
Xd DIR. AXIS SYNCHRONOUS	3.18	2.96	2.75	2.40	3.86	3.67	3.43	3.21					
X'd DIR. AXIS TRANSIENT	0.19	0.18	0.17	0.15	0.23	0.22	0.21	0.20					
X"d DIR. AXIS SUBTRANSIENT	0.14	0.13	0.12	0.11	0.17	0.16	0.15	0.14					
Xq QUAD. AXIS REACTANCE	2.05	1.91	1.77	1.55	2.49	2.37	2.22	2.07					
X"q QUAD. AXIS SUBTRANSIENT	0.29	0.27	0.25	0.22	0.35	0.33	0.31	0.29					
XL LEAKAGE REACTANCE	0.04	0.03	0.03	0.03	0.04	0.04	0.04	0.04					
X2 NEGATIVE SEQUENCE	0.20	0.19	0.18	0.15	0.25	0.23	0.22	0.21					
X0 ZERO SEQUENCE	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.03					
REACTANCES ARE SATURA	ΓED	\ \	ALUES ARE	PER UNIT A	T RATING A)					
T'd TRANSIENT TIME CONST.				0.13	35s								
T"d SUB-TRANSTIME CONST.				0.0									
T'do O.C. FIELD TIME CONST.				2.2									
Ta ARMATURE TIME CONST.				0.0									
SHORT CIRCUIT RATIO	<u> </u>	1/Xd											

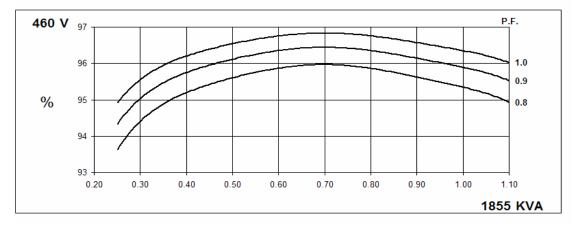


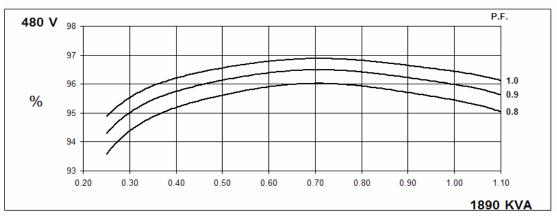

PI734C Winding 312

50 Hz

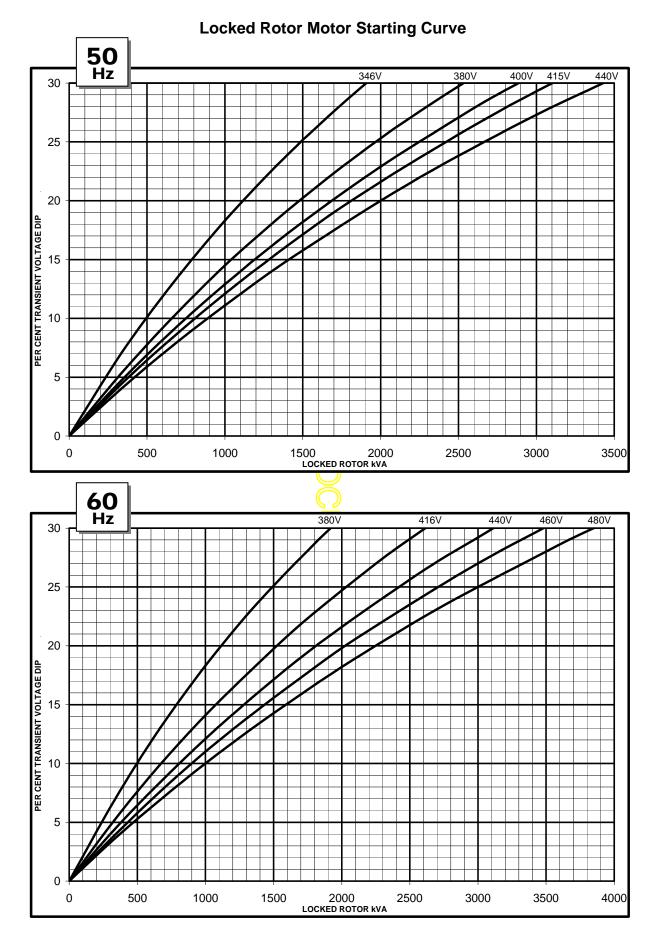


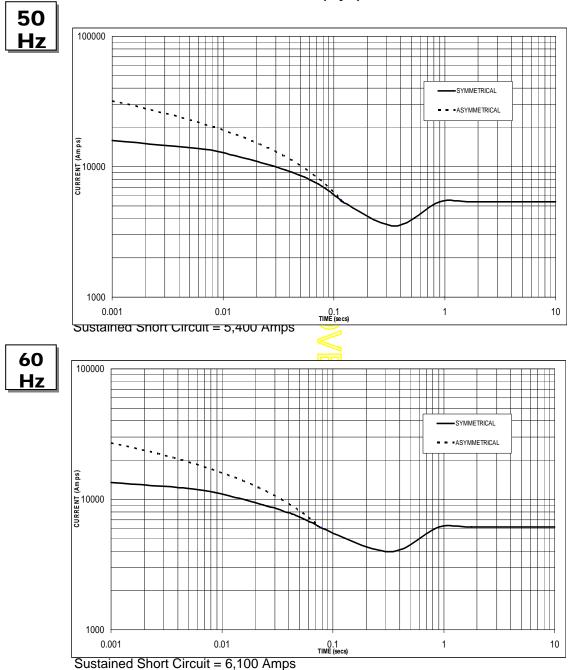



PI734C Winding 312


60

Hz




PI734C

Winding 312

PI734C

STAMFORD

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60	Hz			
Voltage	Factor	Voltage	Factor			
380v	x 1.00	416v	x 1.00			
400v	x 1.05	440v	x 1.06			
415v	x 1.09	460v	x 1.10			
440v	x 1.16	480v	x 1.15			

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines.

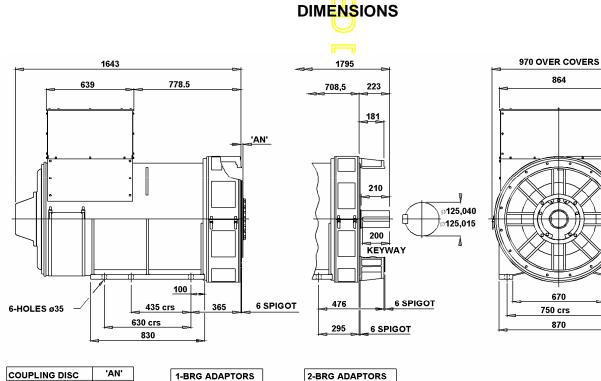
1330

472

450,0 449,5

ţ

35


:h

PI734C

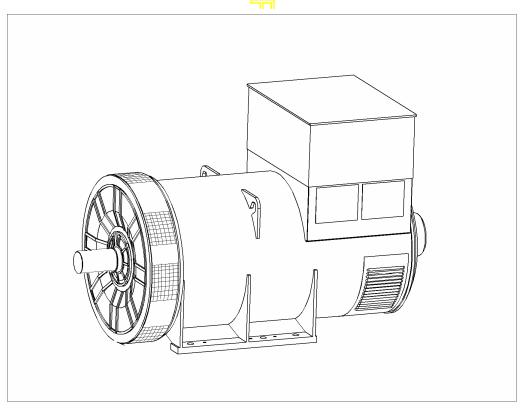
Winding 312 / 0.8 Power Factor

RATINGS

Class - Temp Rise	Co	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	″°C
50Hz Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
kVA	1400	1445	1445	1415	1505	1550	1550	1520	1570	1615	1615	1590	1615	1660	1660	1630
kW	1120	1156	1156	1132	1204	1240	1240	1216	1256	1292	1292	1272	1292	1328	1328	1304
Efficiency (%)	95.4	95.5	95.6	95.8	95.2	95.4	95.5	95.7	95.1	95.2	95.4	95.6	95.0	95.1	95.3	95.5
kW Input	1174	1210	1209	1182	1265	1300	1298	1271	1321	1357	1354	1331	1360	1396	1393	1365
																
60Hz Star (V)	416	440	460	480	416	440	<mark>≱</mark> 460	480	416	440	460	480	416	440	460	480
kVA	1590	1690	1725	1760	1705	1815	1855	1890	1770	1890	1930	1970	1820	1945	1985	2025
kW	1272	1352	1380	1408	1364	1452	1484	1512	1416	1512	1544	1576	1456	1556	1588	1620
Efficiency (%)	95.3	95.4	95.5	95.6	95.2	95.2	95.3	95.4	95.1	95.1	95.2	95.3	95.0	95.0	95.2	95.3
kW Input	1335	1417	1445	1473	1433	1525	1557	1585	1489	1590	1622	1654	1533	1638	1668	1700

COUPLING DISC	'AN'		1-BRG ADAPTORS		2-BRG ADAPTO
S.A.E No 18	15,7		S.A.E No 0	1	S.A.E No 0
S.A.E No 21	0		S.A.E No 00	1	S.A.E No 00
S.A.E No 24	0]			

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100


www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

PI734D - Winding 312

Technica Data Sheet

PI734D

STAMFORD

SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant sections of other national and international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC60034, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

DESCRIPTION

The STAMFORD PI range of synchronous ac generators are brushless with a rotating field. They are separately excited by the STAMFORD Permanent Magnet Generator (PMG). This is a shaft mounted, high frequency, pilot exciter which provides a constant supply of clean power via the Automatic Voltage Regulator (AVR) to the main exciter. The main exciter output is fed to the main rotor, through a full wave bridge rectifier, protected by surge suppression.

VOLTAGE REGULATORS

The PI range generators, complete with a PMG, are available with one of two AVRs. Each AVR has soft start voltage build up and built in protection against sustained over-excitation, which will de-excite the generator after a minimum of 8 seconds.

Underspeed protection (UFRO) is also provided on both AVRs. The UFRO will reduce the generator output voltage proportional to the speed of the generator below a presettable level.

The **MX341 AVR** is two phase sensed with a voltage regulation of ± 1 %. (see the note on regulation).

The **MX321 AVR** is 3 phase rms sensed with a voltage regulation of 0.5% rms (see the note on regulation). The UFRO circuit has adjustable slope and dwell for controlled recovery from step loads. An over voltage protection circuit will shutdown the output device of the AVR, it can also trip an optional excitation circuit breaker if required. As an option, short circuit current limiting is available with the addition of current transformers.

Both the MX341 and the MX321 need a generator mounted current transformer to provide quadrature droop characteristics for load sharing during parallel operation. Provision is also made for the connection of the STAMFORD power factor controller, for embedded applications, and a remote voltage trimmer.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low levels of voltage waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H', and meets the requirements of UL1446.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

NOTE ON REGULATION

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

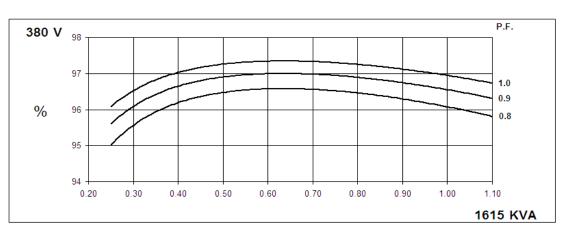
10% when IP44 Filters are fitted.

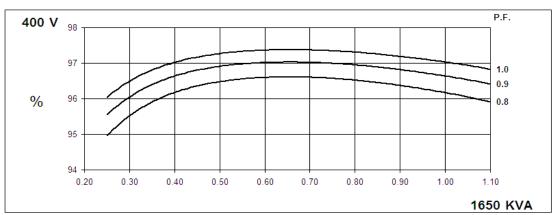
3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level. 3% for every 5°C by which the operational ambient temperature exceeds 40°C.

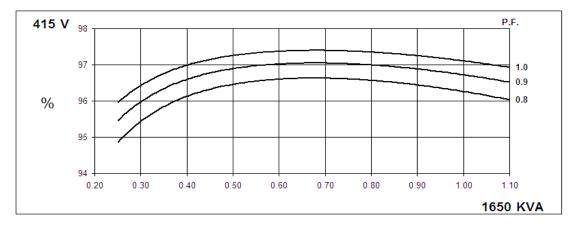
Note: Requirement for operating in an ambient temperature exceeding 60°C must be referred to the factory.

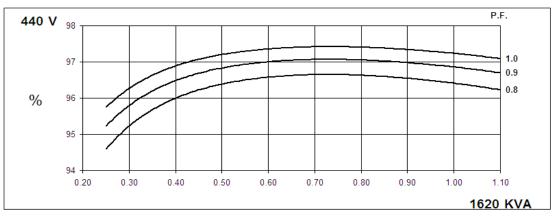
Note: Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

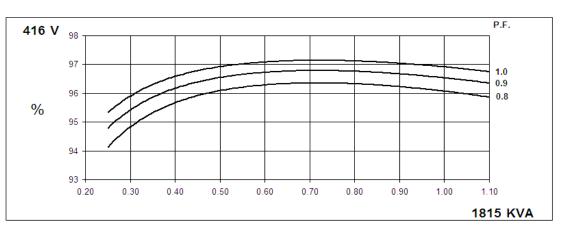
Front cover drawing is typical of the product range.

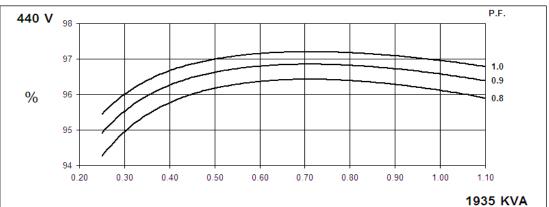

PI734D

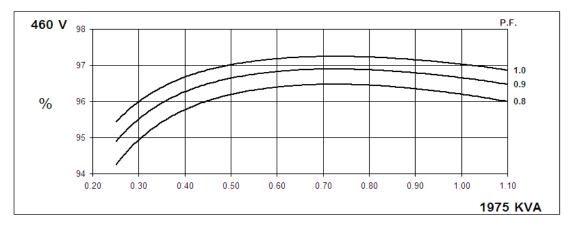

WINDING 312

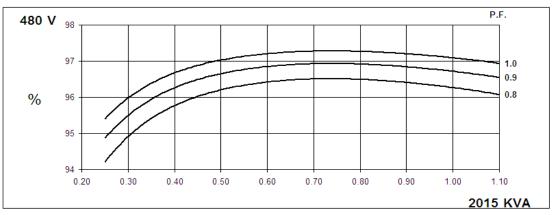

CONTROL SYSTEM	SEPARATEL		PV D M C										
			DT F.IVI.G.										
A.V.R.	MX341	MX321											
VOLTAGE REGULATION	±1%	± 0.5 %	With 4% ENG										
SUSTAINED SHORT CIRCUIT	REFER TO S	SHORICIRC		IENT CURVE	S (page 7)								
INSULATION SYSTEM				CLAS	SS H								
PROTECTION		IP23											
RATED POWER FACTOR		0.8											
STATOR WINDING				DOUBLE L	AYER LAP								
WINDING PITCH				TWO T	HIRDS								
WINDING LEADS				6	i								
MAIN STATOR RESISTANCE		0.0	0114 Ohms P	ER PHASE A	T 22°C STA	R CONNECT	ED						
MAIN ROTOR RESISTANCE				1.98 Ohm:	s at 22°C								
EXCITER STATOR RESISTANCE				17.5 Ohm	s at 22°C								
EXCITER ROTOR RESISTANCE			0.06	3 Ohms PER	PHASE AT 2	2°C							
R.F.I. SUPPRESSION	BS EI	N 61000-6-2	& BSEN 6100	0-6-4,VDE 0	875G, VDE 0	875N. refer to	o factory for o	thers					
WAVEFORM DISTORTION		NO LOAD	< 1.5% NON-	DISTORTING	BALANCE	D LINEAR LO	AD < 5.0%						
MAXIMUM OVERSPEED			\mathbf{Y}	2250 R	ev/Min								
BEARING DRIVE END				BALL. 6	228 C3								
BEARING NON-DRIVE END				BALL. 6	319 C3								
		1 BE	ARING			2 BEA	RING						
WEIGHT COMP. GENERATOR		331	18 kg		3267 kg								
WEIGHT WOUND STATOR		161	19 kg			1619	9 kg						
WEIGHT WOUND ROTOR			33 kg			132 ⁻							
WR² INERTIA			06 <mark>kgm²</mark>			40.219	-						
SHIPPING WEIGHTS in a crate			91 kg			333	-						
PACKING CRATE SIZE			x 154(cm)			216 x 105 :	x 154(cm)						
) Hz			60	Hz						
TELEPHONE INTERFERENCE		THF	-<2%			TIF	<50						
COOLING AIR			c 5700 cfm			3.45 m ³ /sec							
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277					
KVA BASE RATING FOR REACTANCE	1615	1650	1650	1620	1815	1935	1975	2015					
Xd DIR. AXIS SYNCHRONOUS	3.12	2.88	2.67	2.33	3.75	3.57	3.33	3.12					
X'd DIR. AXIS TRANSIENT	0.19	0.18	0.16	0.14	0.23	0.22	0.20	0.19					
X"d DIR. AXIS SUBTRANSIENT	0.14	0.13	0.12	0.11	0.17	0.16	0.15	0.14					
Xq QUAD. AXIS REACTANCE	2.01	1.85	1.72	1.50	2.41	2.30	2.15	2.01					
X"q QUAD. AXIS SUBTRANSIENT	0.28	0.26	0.24	0.21	0.34	0.32	0.30	0.28					
XL LEAKAGE REACTANCE	0.04	0.03	0.04	0.04	0.04								
X2 NEGATIVE SEQUENCE	0.20	0.18	0.17	0.15	0.24	0.23	0.21	0.20					
X0 ZERO SEQUENCE	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.02					
REACTANCES ARE SATURA	red	Ň	VALUES ARE	PER UNIT A	T RATING A	ND VOLTAGE	INDICATED)					
T'd TRANSIENT TIME CONST.				0.13									
T"d SUB-TRANSTIME CONST.				0.0									
T'do O.C. FIELD TIME CONST.				2.2									
TA ARMATURE TIME CONST.				0.0									
SHORT CIRCUIT RATIO		1/Xd											



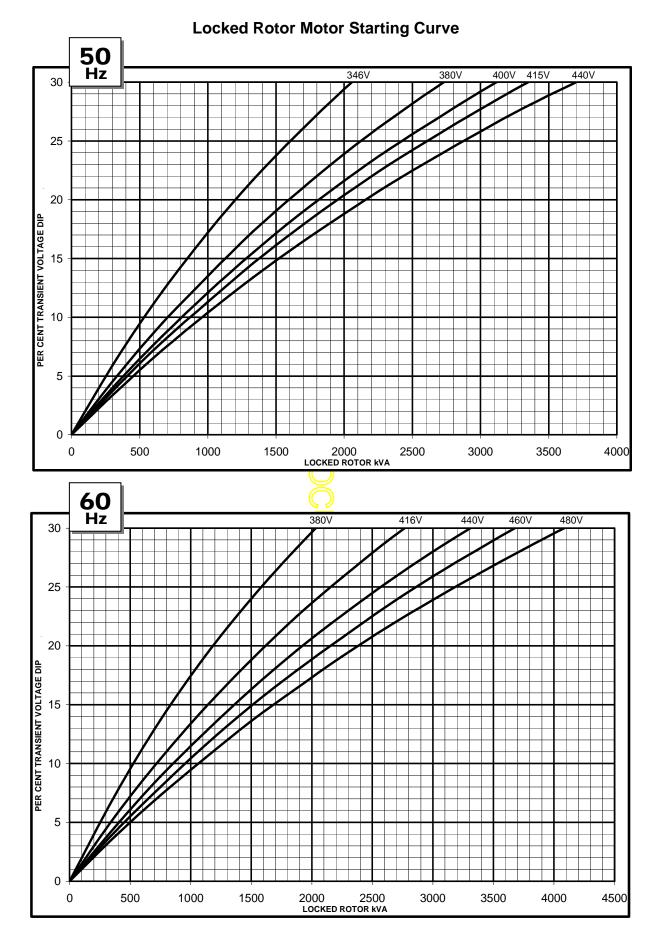


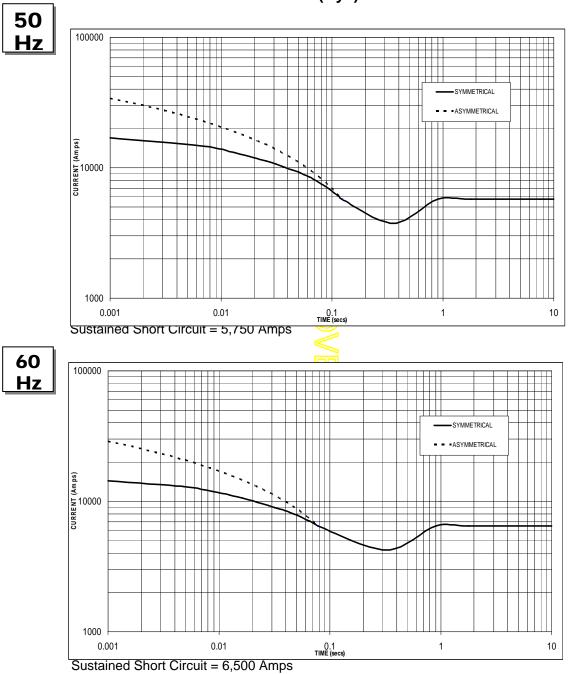






Winding 312




PI734D

Winding 312

PI734D

Winding 312 Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60	Hz			
Voltage	Factor	Voltage	Factor			
380v	x 1.00	416v	x 1.00			
400v	x 1.05	440v	x 1.06			
415v	x 1.09	460v	x 1.10			
440v	x 1.16	480v	x 1.15			

The sustained current value is constant irrespective of voltage level

Note 2

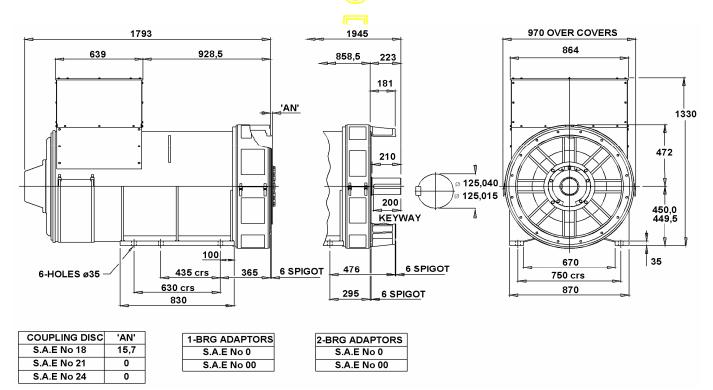
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines.

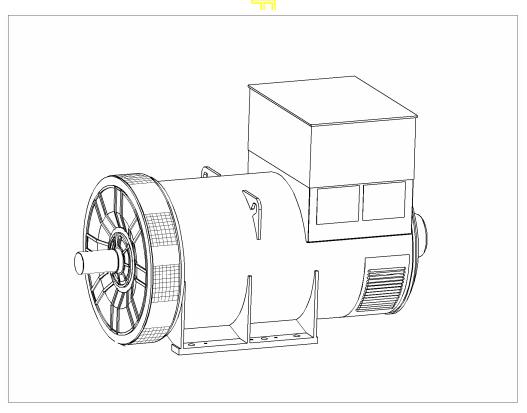

PI734D

Winding 312 / 0.8 Power Factor

RATINGS

Class - Temp Rise	Co	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	″°C
50Hz Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
kVA	1500	1540	1540	1505	1615	1650	1650	1620	1675	1720	1720	1685	1715	1770	1770	1735
kW	1200	1232	1232	1204	1292	1320	1320	1296	1340	1376	1376	1348	1372	1416	1416	1388
Efficiency (%)	96.2	96.3	96.4	96.5	96.1	96.2	96.3	96.4	96.0	96.1	96.2	96.3	95.9	96.0	96.1	96.3
kW Input	1247	1279	1278	1248	1344	1372	1371	1344	1396	1432	1430	1400	1431	1475	1473	1441
					1								1			
60Hz Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
kVA	1690	1800	1840	1875	1815	1935	1975	2015	1890	2015	2055	2100	1940	2070	2115	2160
kW	1352	1440	1472	1500	1452	1548	1580	1612	1512	1612	1644	1680	1552	1656	1692	1728
Efficiency (%)	96.2	96.2	96.3	96.4	96.1	96.1	96.2	96.3	96.0	96.0	96.1	96.2	95.9	96.0	96.1	96.1
kW Input	1405	1497	1529	1556	1511	1611	1642	1674	1575	1679	1711	1746	1618	1725	1761	1798

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100


www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

PI734E - Winding 312

Technica Data Sheet

STAMFORD

SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant sections of other national and international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC60034, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

DESCRIPTION

The STAMFORD PI range of synchronous ac generators are brushless with a rotating field. They are separately excited by the STAMFORD Permanent Magnet Generator (PMG). This is a shaft mounted, high frequency, pilot exciter which provides a constant supply of clean power via the Automatic Voltage Regulator (AVR) to the main exciter. The main exciter output is fed to the main rotor, through a full wave bridge rectifier, protected by surge suppression.

VOLTAGE REGULATORS

The PI range generators, complete with a PMG, are available with one of two AVRs. Each AVR has soft start voltage build up and built in protection against sustained over-excitation, which will de-excite the generator after a minimum of 8 seconds.

Underspeed protection (UFRO) is also provided on both AVRs. The UFRO will reduce the generator output voltage proportional to the speed of the generator below a presettable level.

The **MX341 AVR** is two phase sensed with a voltage regulation of ± 1 %. (see the note on regulation).

The **MX321 AVR** is 3 phase rms sensed with a voltage regulation of 0.5% rms (see the note on regulation). The UFRO circuit has adjustable slope and dwell for controlled recovery from step loads. An over voltage protection circuit will shutdown the output device of the AVR, it can also trip an optional excitation circuit breaker if required. As an option, short circuit current limiting is available with the addition of current transformers.

Both the MX341 and the MX321 need a generator mounted current transformer to provide quadrature droop characteristics for load sharing during parallel operation. Provision is also made for the connection of the STAMFORD power factor controller, for embedded applications, and a remote voltage trimmer.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low levels of voltage waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H', and meets the requirements of UL1446.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

NOTE ON REGULATION

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

10% when IP44 Filters are fitted.

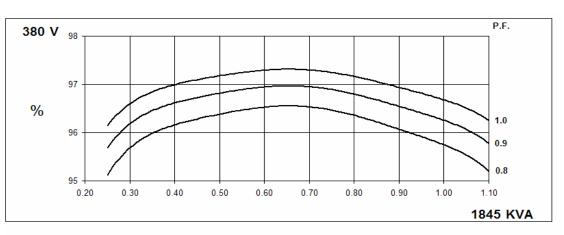
3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level. 3% for every 5°C by which the operational ambient temperature exceeds 40°C.

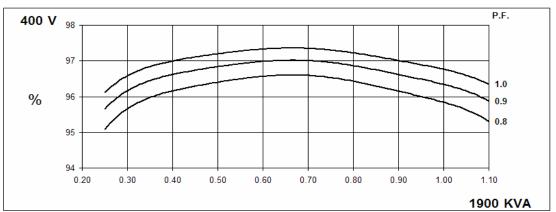
Note: Requirement for operating in an ambient temperature exceeding 60°C must be referred to the factory.

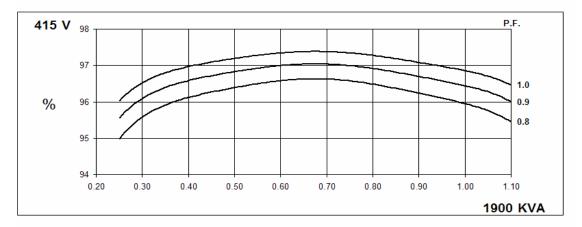
Note: Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

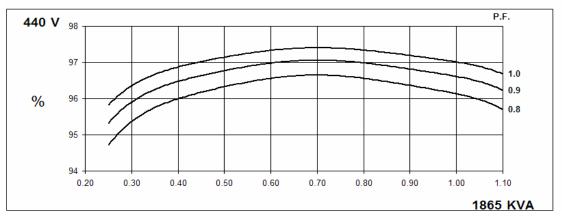
Front cover drawing is typical of the product range.

PI734E

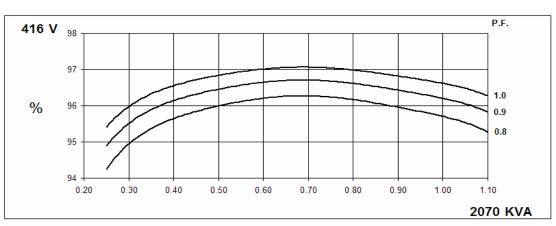

WINDING 312

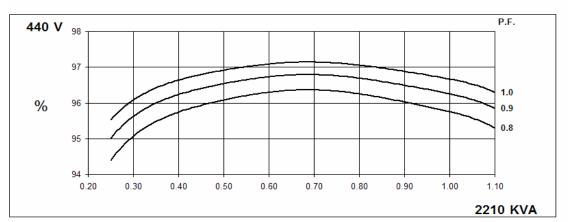

	0-0.0										
	SEPARATELY EXCITED BY P.M.G.										
A.V.R.	MX341	MX321									
VOLTAGE REGULATION	±1%	± 0.5 %	With 4% EN								
SUSTAINED SHORT CIRCUIT	REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)										
INSULATION SYSTEM		CLASS H									
PROTECTION		IP23									
RATED POWER FACTOR		0.8									
STATOR WINDING		DOUBLE LAYER LAP									
WINDING PITCH		TWO THIRDS									
WINDING LEADS				6							
MAIN STATOR RESISTANCE		0.0	0093 Ohms P	ER PHASE A	T 22°C STA	R CONNECT	ED				
MAIN ROTOR RESISTANCE				2.17 Ohm	s at 22°C						
EXCITER STATOR RESISTANCE				17.5 Ohm	s at 22°C						
EXCITER ROTOR RESISTANCE			0.06	3 Ohms PER	PHASE AT 2	2°C					
R.F.I. SUPPRESSION	BS EI	N 61000-6-2	& BSEN 6100	0-6-4,VDE 0	875G, VDE 0	875N. refer to	o factory for o	thers			
WAVEFORM DISTORTION		NO LOAD	< 1.5% NON-	DISTORTING	BALANCED	LINEAR LO	AD < 5.0%				
MAXIMUM OVERSPEED				2250 R	ev/Min						
BEARING DRIVE END				BALL. 6	228 C3						
BEARING NON-DRIVE END		BALL. 6319 C3									
		1 BEARING 2 BEARING									
WEIGHT COMP. GENERATOR		355	56 kg		3506 kg						
WEIGHT WOUND STATOR	1747 kg										
WEIGHT WOUND ROTOR	1494 kg 1432 kg										
WR² INERTIA		45.49 kgm ² 44.4891 kgm ²									
SHIPPING WEIGHTS in a crate			29 kg			357					
PACKING CRATE SIZE		216 x 105	x 154(cm)			216 x 105 x					
		50) Hz			60	Hz				
TELEPHONE INTERFERENCE		THE	-<2%		TIF<50						
COOLING AIR		2.69 m ³ /se	c 5700 cfm		3.45 m ³ /sec 7300 cfm						
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277			
kVA BASE RATING FOR REACTANCE VALUES	1845	1900	1900	1865	2070	2210	2255	2300			
Xd DIR. AXIS SYNCHRONOUS	3.18	2.96	2.75	2.40	3.84	3.67	3.42	3.21			
X'd DIR. AXIS TRANSIENT	0.19	0.18	0.17	0.15	0.23	0.22	0.21	0.19			
X"d DIR. AXIS SUBTRANSIENT	0.14	0.13	0.12	0.11	0.17	0.16	0.15	0.14			
Xq QUAD. AXIS REACTANCE	2.04	1.90	1.76	1.54	2.47	2.36	2.20	2.06			
X"q QUAD. AXIS SUBTRANSIENT	0.29	0.27	0.25	0.22	0.35	0.33	0.31	0.29			
XL LEAKAGE REACTANCE	0.04	0.03	0.03	0.03	0.04	0.04	0.04	0.04			
X2 NEGATIVE SEQUENCE	0.20	0.19	0.17	0.15	0.24	0.23	0.22	0.20			
X0 ZERO SEQUENCE	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.03			
REACTANCES ARE SATURA	ΓED		VALUES ARE	PER UNIT A	T RATING AI)			
	0.149s										
	0.02s										
T'do O.C. FIELD TIME CONST.	2.46s 0.02s										
TA ARMATURE TIME CONST.											
SHORT CIRCUIT RATIO 1/Xd											

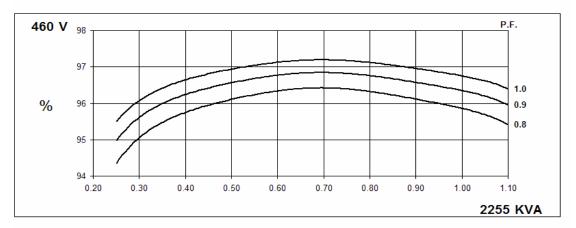


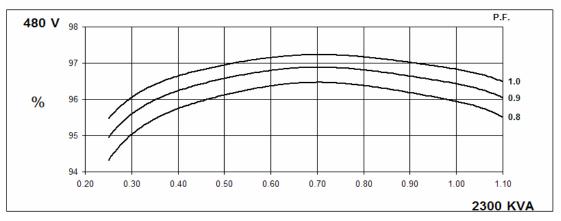

PI734E Winding 312

50 Hz

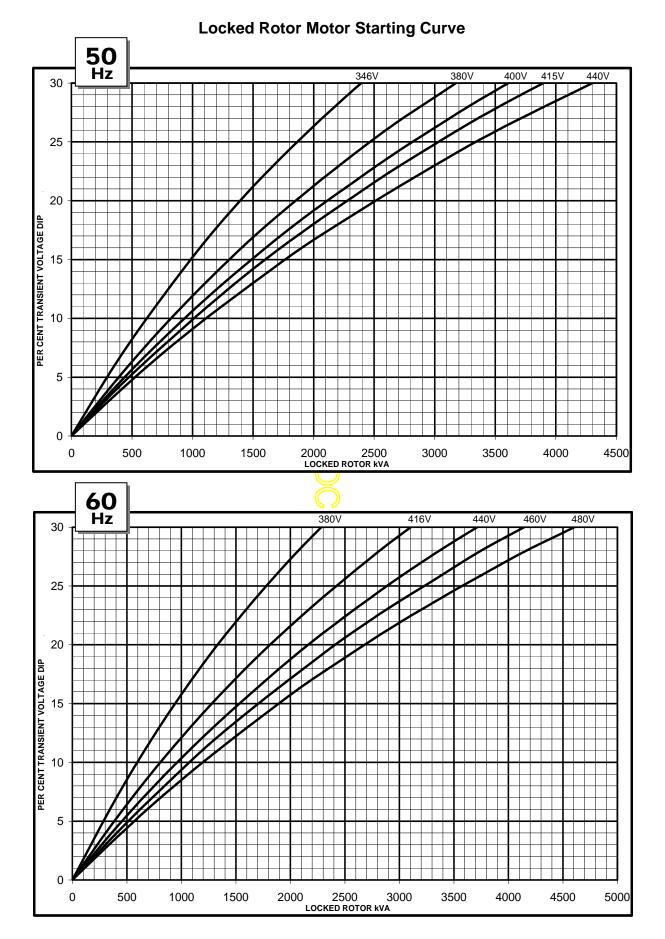


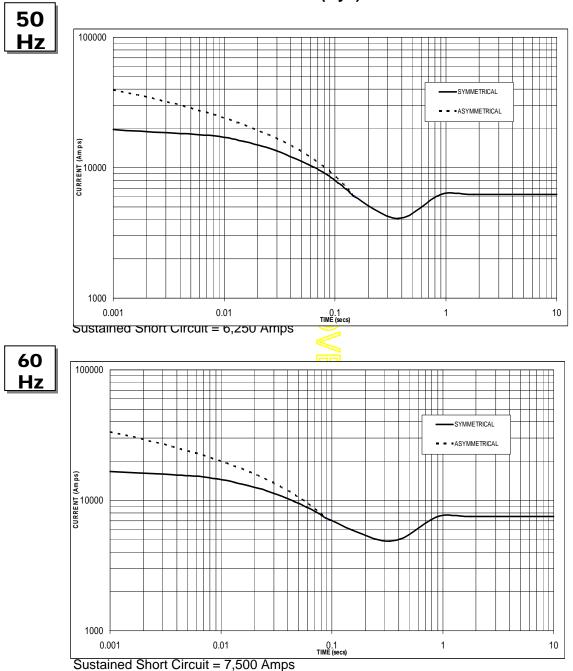



60


Hz

Winding 312





Winding 312

STAMFORD

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	x 1.00	416v	x 1.00			
400v	x 1.05	440v	x 1.06			
415v	x 1.09	460v	x 1.10			
440v	x 1.16	480v	x 1.15			

The sustained current value is constant irrespective of voltage level

Note 2

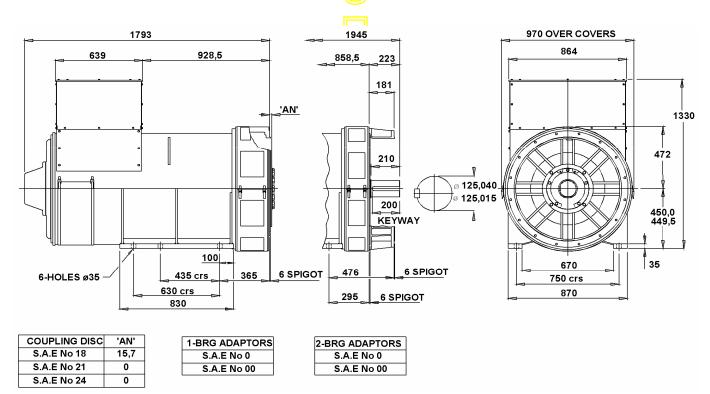
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines.

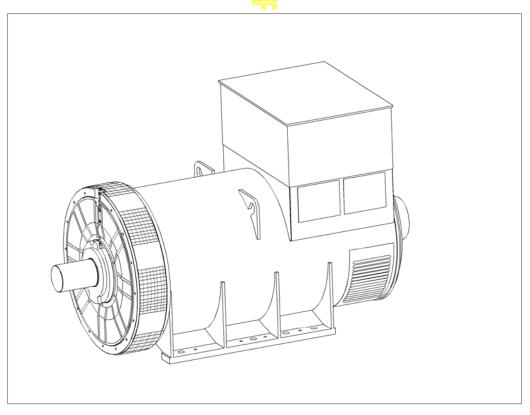

PI734E

Winding 312 / 0.8 Power Factor

RATINGS

Class - Temp Rise	Cont. F - 105/40°C			Co	Cont. H - 125/40°C			Standby - 150/40°C				Standby - 163/27°C				
50Hz Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
kVA	1715	1770	1770	1735	1845	1900	1900	1865	1920	1980	1980	1940	1975	2035	2035	1995
kW	1372	1416	1416	1388	1476	1520	1520	1492	1536	1584	1584	1552	1580	1628	1628	1596
Efficiency (%)	95.9	96.0	96.1	96.3	95.7	95.8	96.0	96.1	95.6	95.7	95.8	96.1	95.5	95.6	95.8	96.0
kW Input	1431	1475	1473	1441	1542	1587	1583	1553	1607	1655	1653	1615	1654	1703	1699	1663
	1				1				1				1			
60Hz Star (V)	416	440	460	480	416	440	<mark>≥</mark> 460	480	416	440	460	480	416	440	460	480
kVA	1935	2055	2100	2140	2070	2210	2255	2300	2155	2300	2345	2395	2215	2365	2415	2465
kW	1548	1644	1680	1712	1656	1768	1804	1840	1724	1840	1876	1916	1772	1892	1932	1972
Efficiency (%)	95.8	95.9	96.0	96.1	95.7	95.8	95.9	95.9	95.6	95.7	95.8	95.9	95.5	95.6	95.7	95.8
kW Input	1616	1714	1750	1781	1730	1846	1881	1919	1803	1923	1958	1998	1855	1979	2019	2058

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100


www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

PI734F - Winding 312

Technica Data Sheet

PI734F

STAMFORD

SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant sections of other national and international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC60034, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

DESCRIPTION

The STAMFORD PI range of synchronous ac generators are brushless with a rotating field. They are separately excited by the STAMFORD Permanent Magnet Generator (PMG). This is a shaft mounted, high frequency, pilot exciter which provides a constant supply of clean power via the Automatic Voltage Regulator (AVR) to the main exciter. The main exciter output is fed to the main rotor, through a full wave bridge rectifier, protected by surge suppression.

VOLTAGE REGULATORS

The PI range generators, complete with a PMG, are available with one of two AVRs. Each AVR has soft start voltage build up and built in protection against sustained over-excitation, which will de-excite the generator after a minimum of 8 seconds.

Underspeed protection (UFRO) is also provided on both AVRs. The UFRO will reduce the generator output voltage proportional to the speed of the generator below a presettable level.

The **MX341 AVR** is two phase sensed with a voltage regulation of ± 1 %. (see the note on regulation).

The **MX321 AVR** is 3 phase rms sensed with a voltage regulation of 0.5% rms (see the note on regulation). The UFRO circuit has adjustable slope and dwell for controlled recovery from step loads. An over voltage protection circuit will shutdown the output device of the AVR, it can also trip an optional excitation circuit breaker if required. As an option, short circuit current limiting is available with the addition of current transformers.

Both the MX341 and the MX321 need a generator mounted current transformer to provide quadrature droop characteristics for load sharing during parallel operation. Provision is also made for the connection of the STAMFORD power factor controller, for embedded applications, and a remote voltage trimmer.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low levels of voltage waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H', and meets the requirements of UL1446.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

NOTE ON REGULATION

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

10% when IP44 Filters are fitted.

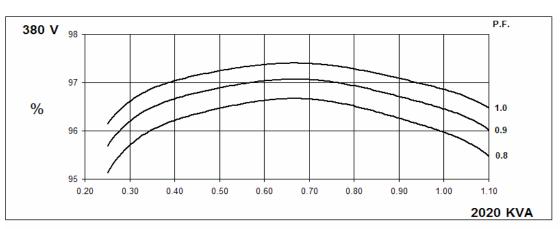
3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level. 3% for every 5°C by which the operational ambient temperature exceeds 40°C.

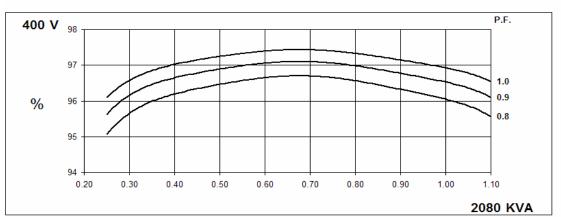
Note: Requirement for operating in an ambient temperature exceeding 60°C must be referred to the factory.

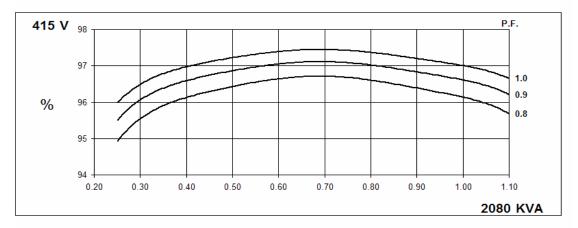
Note: Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

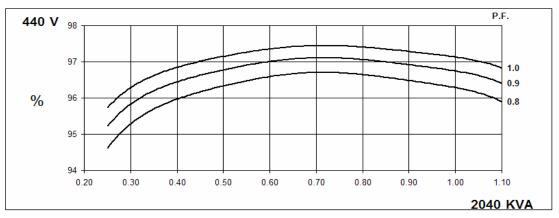
Front cover drawing is typical of the product range.

PI734F

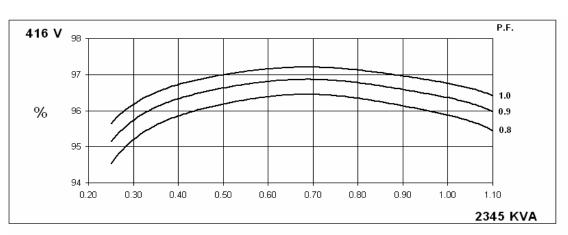

WINDING 312

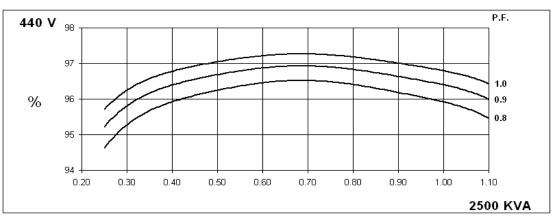

CONTROL SYSTEM	L SYSTEM SEPARATELY EXCITED BY P.M.G.										
A.V.R.	MX341 MX321 ± 1% ± 0.5 % With 4% ENGINE GOVERNING										
VOLTAGE REGULATION	± 1%	± 0.5 %									
SUSTAINED SHORT CIRCUIT	REFER TO S	SHORT CIRC		IENT CURVE	ES (page 7)						
INSULATION SYSTEM		CLASS H									
PROTECTION		IP23									
RATED POWER FACTOR		0.8									
STATOR WINDING		DOUBLE LAYER LAP									
WINDING PITCH		TWO THIRDS									
WINDING LEADS		6									
MAIN STATOR RESISTANCE		0.00076 Ohms PER PHASE AT 22°C STAR CONNECTED									
MAIN ROTOR RESISTANCE				2.31 Ohm:	s at 22°C						
EXCITER STATOR RESISTANCE			50	17.5 Ohm:	s at 22°C						
EXCITER ROTOR RESISTANCE			0.06	3 Ohms PER	PHASE AT 2	2°C					
R.F.I. SUPPRESSION	BS EI	N 61000-6-2	& BSEN 6100	0-6-4,VDE 0	875G, VDE 0	875N. refer to	o factory for o	thers			
WAVEFORM DISTORTION		NO LOAD	< 1.5% NON-	DISTORTING	BALANCE	D LINEAR LO	AD < 5.0%				
MAXIMUM OVERSPEED			9	2250 R	ev/Min						
BEARING DRIVE END		BALL. 6232 C3									
BEARING NON-DRIVE END		BALL. 6319 C3									
		1 BEARING 2 BEARING									
WEIGHT COMP. GENERATOR		384	40 kg 🕖		3807 kg						
WEIGHT WOUND STATOR	1908 kg 1908 kg										
WEIGHT WOUND ROTOR	1609 kg 1565 kg										
WR ² INERTIA	49.3409 kgm ² 48.424 kgm ²										
SHIPPING WEIGHTS in a crate			13kg			387					
PACKING CRATE SIZE		216 x 105	x 154(cm)			216 x 105 x					
) Hz			60	Hz				
TELEPHONE INTERFERENCE		THE	-<2%		TIF<50						
COOLING AIR			c 5700 cfm		3.45 m ³ /sec 7300 cfm						
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277			
KVA BASE RATING FOR REACTANCE VALUES	2020	2080	2080	2040	2345	2500	2550	2600			
Xd DIR. AXIS SYNCHRONOUS	2.93	2.73	2.53	2.21	3.55	3.38	3.16	2.96			
X'd DIR. AXIS TRANSIENT	0.18	0.17	0.15	0.13	0.21	0.20	0.19	0.18			
X"d DIR. AXIS SUBTRANSIENT	0.13	0.12	0.11	0.10	0.16	0.15	0.14	0.13			
Xq QUAD. AXIS REACTANCE	1.89	1.75	1.63	1.42	2.28	2.18	2.03	1.90			
X"q QUAD. AXIS SUBTRANSIENT	0.26	0.25	0.23	0.20	0.32	0.31	0.29	0.27			
XL LEAKAGE REACTANCE	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.03			
X2 NEGATIVE SEQUENCE	0.19	0.17	0.16	0.14	0.23	0.22	0.20	0.19			
X0 ZERO SEQUENCE	0.02	0.02	0.02	0.02	0.03	0.03	0.02	0.02			
REACTANCES ARE SATURA	TED		VALUES ARE	PER UNIT A	T RATING A)			
T'd TRANSIENT TIME CONST.	0.154s										
T"d SUB-TRANSTIME CONST.	0.02s										
T'do O.C. FIELD TIME CONST.				2.5							
TA ARMATURE TIME CONST.				0.0							
IORT CIRCUIT RATIO 1/Xd											

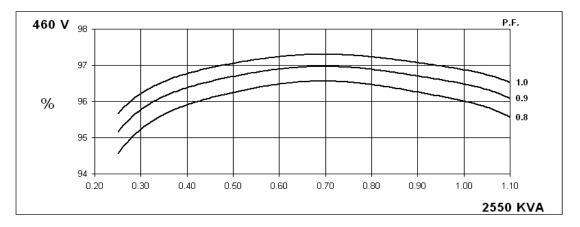


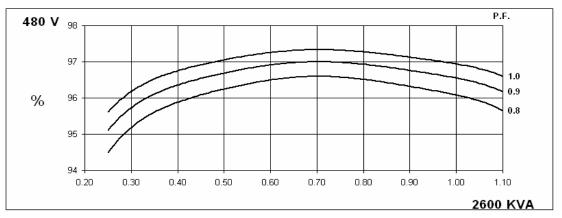

PI734F

Winding 312

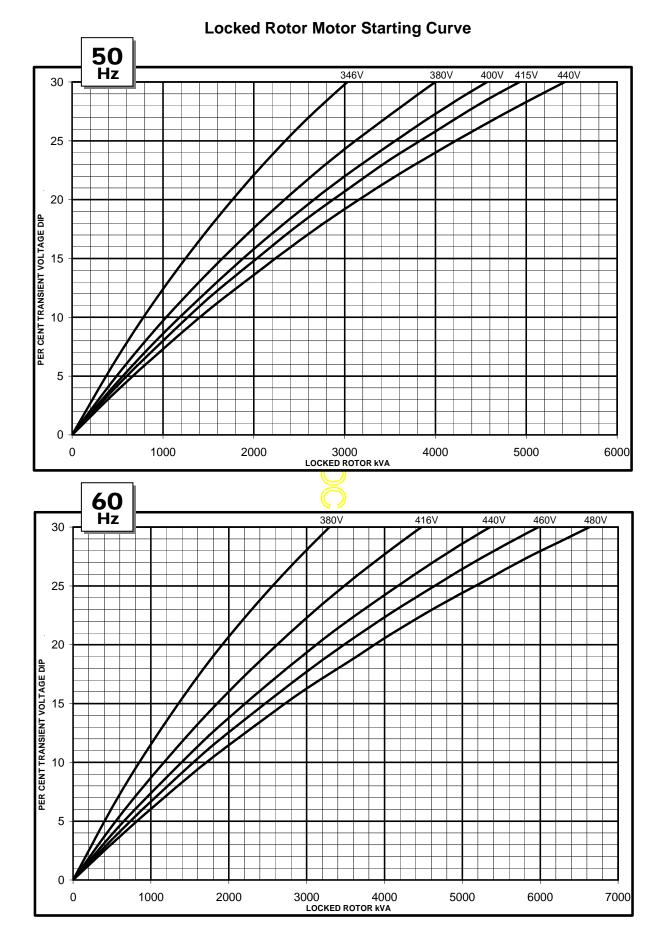




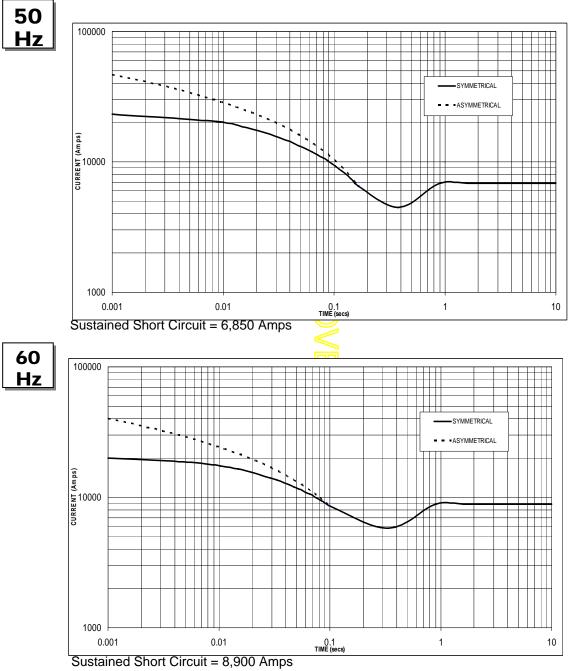



PI734F Winding 312

60 Hz



PI734F


Winding 312

STAMFORD

PI734F

Winding 312 Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz						
Voltage	Factor	Voltage	Factor					
380v	x 1.00	416v	x 1.00					
400v	x 1.05	440v	x 1.06					
415v	x 1.09	460v	x 1.10					
440v	x 1.16	480v	x 1.15					

The sustained current value is constant irrespective of voltage level

Note 2

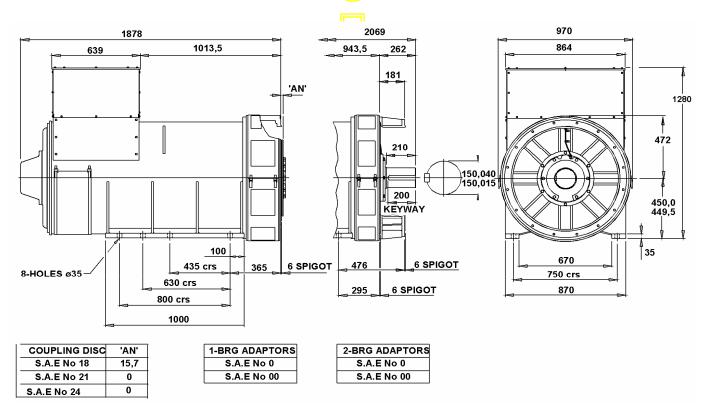
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines.

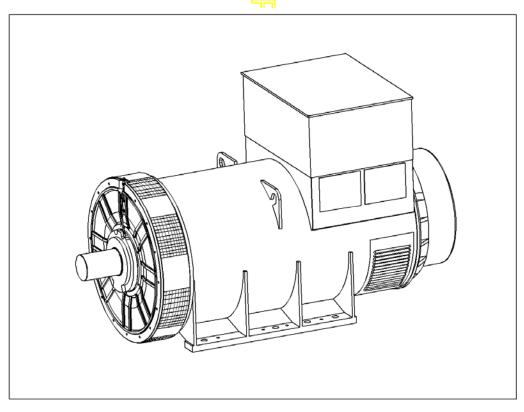

PI734F

Winding 312 / 0.8 Power Factor

RATINGS

Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	″°C
50Hz Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
kVA	1880	1935	1935	1900	2020	2080	2080	2040	2105	2170	2170	2125	2165	2250	2250	2185
kW	1504	1548	1548	1520	1616	1664	1664	1632	1684	1736	1736	1700	1732	1800	1800	1748
Efficiency (%)	96.1	96.2	96.3	96.4	96.0	96.0	96.1	96.3	95.9	95.9	96.0	96.2	95.8	95.8	96.0	96.2
kW Input	1565	1609	1607	1577	1683	1733	1732	1695	1756	1810	1808	1767	1808	1878	1876	1817
60Hz Star (V)	416	440	460	480	416	440	≥460	480	416	440	460	480	416	440	460	480
kVA	2190	2325	2370	2420	2345	2500	2550	2600	2435	2600	2650	2705	2505	2675	2730	2785
kW	1752	1860	1896	1936	1876	2000	2040	2080	1948	2080	2120	2164	2004	2140	2184	2228
Efficiency (%)	96.0	96.1	96.1	96.2	95.9	95.9	96.0	96.1	95.8	95.8	95.9	96.0	95.7	95.8	95.9	95.9
kW Input	1825	1935	1973	2012	1957	2086	2125	2164	2033	2171	2211	2254	2094	2234	2277	2323

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100


www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

PI734G - Winding 312

Technica Data Sheet

PI734G SPECIFICATIONS & OPTIONS

STAMFORD

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant sections of other national and international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC60034, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

DESCRIPTION

The STAMFORD PI range of synchronous ac generators are brushless with a rotating field. They are separately excited by the STAMFORD Permanent Magnet Generator (PMG). This is a shaft mounted, high frequency, pilot exciter which provides a constant supply of clean power via the Automatic Voltage Regulator (AVR) to the main exciter. The main exciter output is fed to the main rotor, through a full wave bridge rectifier, protected by surge suppression.

VOLTAGE REGULATORS

The PI range generators, complete with a PMG, are available with one of two AVRs. Each AVR has soft start voltage build up and built in protection against sustained over-excitation, which will de-excite the generator after a minimum of 8 seconds.

Underspeed protection (UFRO) is also provided on both AVRs. The UFRO will reduce the generator output voltage proportional to the speed of the generator below a presettable level.

The **MX341 AVR** is two phase sensed with a voltage regulation of ± 1 %. (see the note on regulation).

The **MX321 AVR** is 3 phase rms sensed with a voltage regulation of 0.5% rms (see the note on regulation). The UFRO circuit has adjustable slope and dwell for controlled recovery from step loads. An over voltage protection circuit will shutdown the output device of the AVR, it can also trip an optional excitation circuit breaker if required. As an option, short circuit current limiting is available with the addition of current transformers.

Both the MX341 and the MX321 need a generator mounted current transformer to provide quadrature droop characteristics for load sharing during parallel operation. Provision is also made for the connection of the STAMFORD power factor controller, for embedded applications, and a remote voltage trimmer.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low levels of voltage waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H', and meets the requirements of UL1446.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

NOTE ON REGULATION

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

10% when IP44 Filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level. 3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient temperature exceeding 60°C must be referred to the factory.

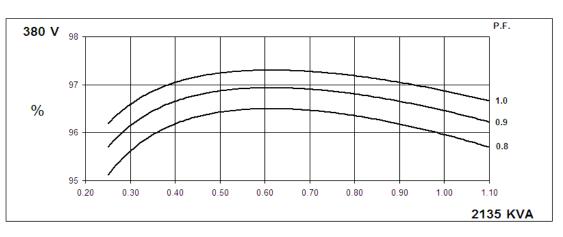
Note: Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

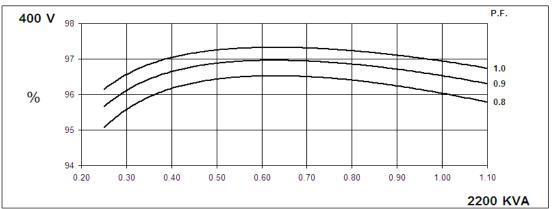
Front cover drawing is typical of the product range.

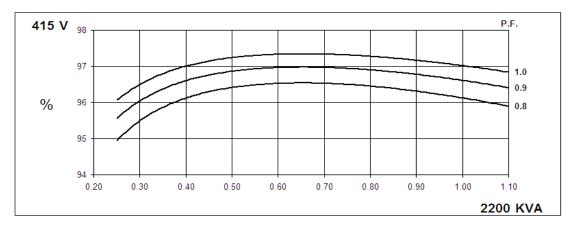
STAMFORD

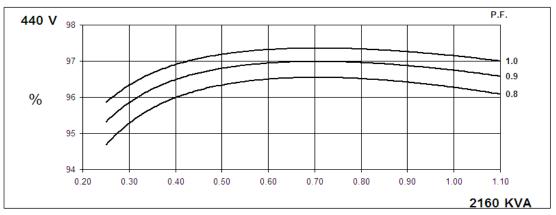
PI734G

WINDING 312

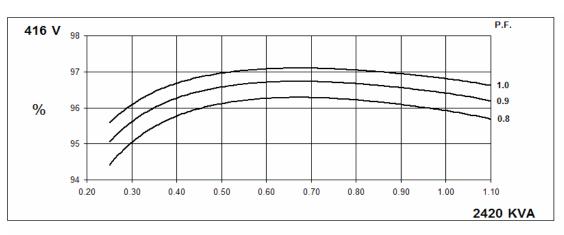

CONTROL SYSTEM	SEPARATEL		BYPMG											
A.V.R.	MX341	MX321	DTT.WI.C.											
VOLTAGE REGULATION	± 1%	± 0.5 %	With 4% ENG											
SUSTAINED SHORT CIRCUIT														
	KEI EK IO		Den Deorren											
INSULATION SYSTEM				CLAS	SS H									
PROTECTION				IP2	23									
RATED POWER FACTOR				0.	8									
STATOR WINDING		DOUBLE LAYER LAP												
WINDING PITCH		TWO THIRDS												
WINDING LEADS		6												
MAIN STATOR RESISTANCE		0.0	0008 Ohms PE	R PHASE A	T 22°C STAF		Ð							
MAIN ROTOR RESISTANCE				2.42 Ohm:	s at 22°C									
EXCITER STATOR RESISTANCE			50	16 Ohms	at 22°C									
EXCITER ROTOR RESISTANCE			0.05	Ohms PER	PHASE AT 2	2°C								
R.F.I. SUPPRESSION	BS EI	N 61000-6-2	& BSEN 6100	0-6-4,VDE 0	875G, VDE 0	875N. refer to	o factory for o	thers						
WAVEFORM DISTORTION			< 1.5% NON-											
MAXIMUM OVERSPEED				2250 R										
BEARING DRIVE END				BALL. 6										
BEARING NON-DRIVE END			<u></u>	BALL. 6										
		1 BE	ARING	DALE. 0	2 BEARING									
WEIGHT COMP. GENERATOR			54 kg		4022 kg									
WEIGHT WOUND STATOR			15 kg		2015 kg									
WEIGHT WOUND ROTOR			97 kg		1654 kg									
					-									
WR ² INERTIA			11 kgm ²		51.3341 kgm ²									
SHIPPING WEIGHTS in a crate			27kg		4091kg 216 x 105 x 154(cm)									
PACKING CRATE SIZE			x 154(cm)											
					60 Hz									
			-<2%		TIF<50 3.45 m³/sec 7300 cfm									
	200/202		c 5700 cfm	440/054	44.0/040			400/077						
VOLTAGE STAR kVA BASE RATING FOR REACTANCE	380/220 2135	400/231 2200	415/240 2200	440/254 2160	416/240 2420	440/254 2535	460/266 2625	480/277 2750						
VALUES Xd DIR. AXIS SYNCHRONOUS	3.71	3.45	3.20	2.80	4.38	4.10	3.89	3.74						
X'd DIR. AXIS TRANSIENT	0.21	0.19	0.18	0.15	0.24	0.23	0.22	0.21						
X"d DIR. AXIS SUBTRANSIENT	0.15	0.13	0.13	0.10	0.24	0.16	0.15	0.15						
Xq QUAD. AXIS REACTANCE	2.38	2.22	2.06	1.80	2.82	2.64	2.50	2.41						
X"q QUAD. AXIS SUBTRANSIENT	0.28	0.26	0.24	0.21	0.33	0.31	0.30	0.28						
XL LEAKAGE REACTANCE	0.28	0.20	0.24	0.21	0.33	0.04	0.30	0.28						
X2 NEGATIVE SEQUENCE	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04						
X0 ZERO SEQUENCE	0.04 0.04 0.03 0.03 0.04 0.04 0.04 0.04													
REACTANCES ARE SATURA			VALUES ARE											
T'd TRANSIENT TIME CONST.				0.1										
T"d SUB-TRANSTIME CONST.				0.0	1s									
T'do O.C. FIELD TIME CONST.				2.8	9s									
Ta ARMATURE TIME CONST.				0.0	2s									
SHORT CIRCUIT RATIO				1/>	(d									

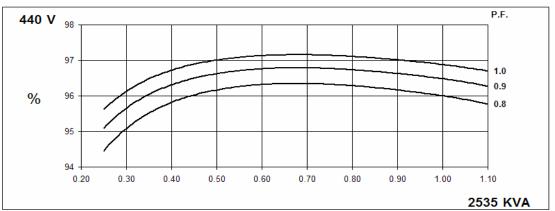


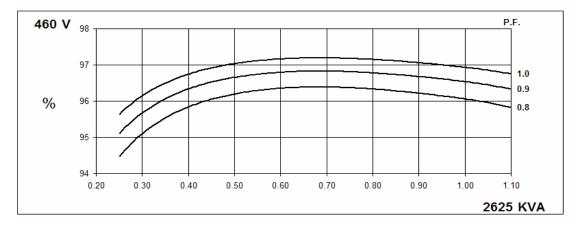

50 Hz

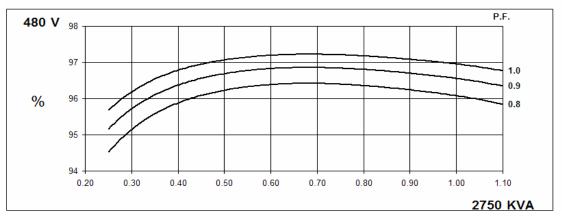

Winding 312

THREE PHASE EFFICIENCY CURVES

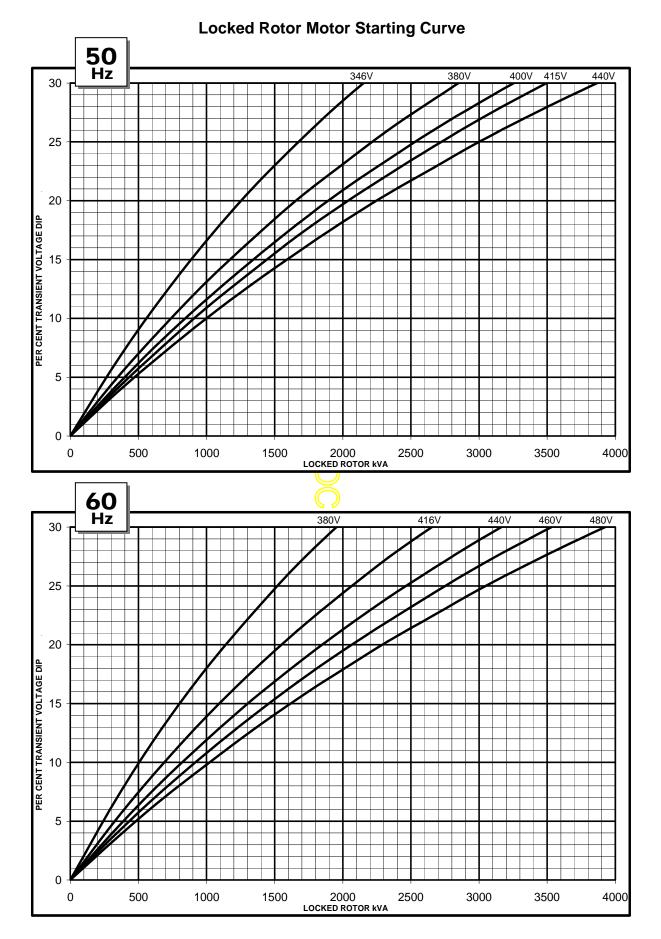


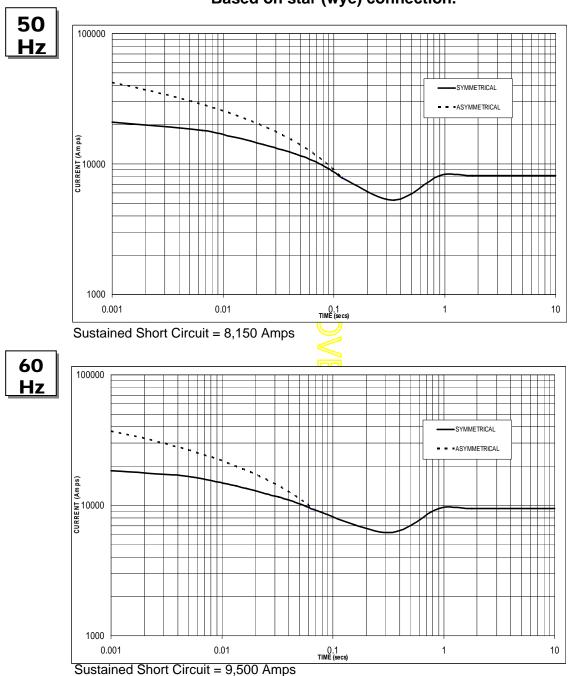

Winding 312


60


Hz

THREE PHASE EFFICIENCY CURVES





Winding 312

STAMFORD

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz						
Voltage	Factor	Voltage	Factor					
380v	x 1.00	416v	x 1.00					
400v	x 1.05	440v	x 1.06					
415v	x 1.09	460v	x 1.10					
440v	x 1.16	480v	x 1.15					

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

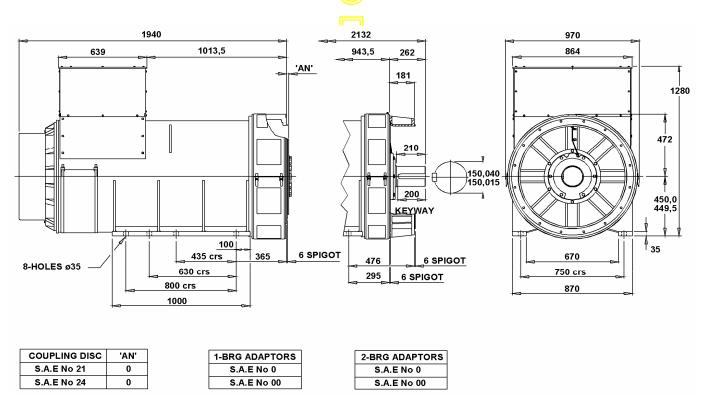
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines.

STAMFORD


PI734G

Winding 312 / 0.8 Power Factor

RATINGS

Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	′°C
50Hz Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
kVA	1985	2050	2050	2005	2135	2200	2200	2160	2225	2295	2295	2250	2290	2360	2360	2310
kW	1588	1640	1640	1604	1708	1760	1760	1728	1780	1836	1836	1800	1832	1888	1888	1848
Efficiency (%)	96.1	96.2	96.3	96.4	96.0	96.0	96.1	96.3	95.9	95.9	96.0	96.2	95.8	95.9	96.0	96.1
kW Input	1652	1705	1703	1664	1779	1833	1831	1794	1856	1914	1913	1871	1912	1969	1967	1923
ſ	1															
60Hz Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
kVA	2255	2360	2445	2560	2420	2535	2625	2750	2515	2635	2725	2860	2590	2715	2810	2945
kW	1804	1888	1956	2048	1936	2028	2100	2200	2012	2108	2180	2288	2072	2172	2248	2356
Efficiency (%)	96.0	96.1	96.2	96.2	95.9	96.0	96.1	96.1	95.8	95.9	96.0	96.0	95.8	95.9	95.9	95.9
kW Input	1879	1965	2033	2129	2019	2113	2185	2289	2100	2198	2271	2383	2163	2265	2344	2457

DIMENSIONS

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.